Decentralised renewable energy resources for electric vehicle (EV) charging pave the way for green mobility. In this paper, we analyse different rooftop solar-based EV charging station (EVCS) configurations. The configurations are designed with and without battery storage and grid connection. A techno-economic framework is developed based on the power flow interactions between rooftop photovoltaic (RTPV), grid, and battery storage to calculate the life-cycle costing of the system and life-cycle cost of energy (LCOE). The results of the techno-economic model suggest that an adequate size of RTPV reduces the LCOE as compared to a purely grid-connected EVCS. Adding a small battery storage unit to this configuration increases the LCOE by 1.3-1.6 /kWh. Additionally, this configuration yields more revenue from the grid due to higher net export. However, an off-grid rooftop solar-based EVCS with battery storage is more expensive due to reliability concerns about the oversizing of the battery. The techno-economic framework and the resultant LCOE comparisons done in the Indian context will help developers make informed choices to enable green mobility.
Types
Journal Articles
Upload Documentations
Choose Verticals
From Date
To Date
status
Live
Image
Published by
IEEE
Publication Detail Header Image