MA Ramaswamy
Correlation Between Central Receiver Size and Solar Field Using Flat Heliostats
In Central Receiver Systems (CRSs), thousands of heliostats track the sunrays and reflect beam radiation on to a receiver surface. The size of the reflected image and the extent of reflection from the heliostats are one of the important criteria that need to be taken into account while designing a receiver, since spillage losses may vary from 2 to 16% of the total losses. The present study aims to determine the size of an external cylindrical receiver, such that the rays reflected from all the heliostats in the field are intercepted.
Estimation of Hourly Direct Normal Irradiance (DNI) for 22 Stations in India (Revised)
Concentrated Solar Power (CSP) plants require Direct Normal Solar Irradiance (DNI) data for both design and operation. The availability of DNI data, especially with closer time intervals, until 2010-12 was scarce. However, the India Meteorological Department (IMD) published a Typical Meteorological Year (TMY) data on Global Horizontal Irradiance (GHI) and Diffuse Horizontal Irradiance (DHI). The study developed a methodology to use these GHI and DHI data and arrive at DNI.
Preliminary design of heliostat field and performance analysis of solar tower plants with thermal storage and hybridisation
Solar tower technology has gained considerable momentum over the past decade. In a solar tower plant, a single receiver is used and the power collected by the heliostat field is strongly coupled to the tower height and its location with respect to the field. The literature available focuses largely on the component-level details of the heliostat field, ray-tracing mechanisms, receiver heat transfer analyses, etc.
Methodology for sizing the solar field for parabolic trough technology with thermal storage and hydribization
A detailed methodology to design the size of solar field for a parabolic trough plant is not explicitly available in open literature, particularly if thermal storage and hybridization are also considered, as most of the papers present a gross overview.
A novel approach to determine the non-dimensional heliostat field boundary for solar tower plants
A novel approach to determine the non-dimensional heliostat field boundary for solar tower plants.Solar tower technology has gained considerable momentum over the past decade. In a solar tower plant, the power collected by the heliostat field is strongly coupled to the height of the tower and its location with respect to the field. This paper provides a methodology to fix the boundary of the field (non-dimensionalised with respect to the tower height).
Design of Solar Field and Performance Estimation of Solar Tower Plants
The study aims to develop a methodology to carry out a technical analysis of a solar tower (ST) technology. The proposed rational approach determines the optimum solar field and the associated tower height for an ST using an external cylindrical receiver, using molten salt as both HTF and storage medium operating with steam Rankine power cycle.