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Some of the major findings from the statistical analy-
ses include (i) contrasting association in BC  versus 
 O3 and  PM2.5 versus  O3; (ii) around one-fourth of 
the observed receptor site BC was contributed by 
local sources/emissions; and (iii) the source loca-
tions potentially contributing to BC and  PM2.5 were 
spatially different. In Bengaluru, long-term expo-
sure to  PM2.5 resulted in around 3413, 3393, 1016, 
and 147 attributable deaths for the health endpoints 
chronic obstructive pulmonary disorder, ischemic 
heart disease, stroke, and lung cancer, respectively. 
Long-term exposure to  O3 resulted in around 155 
attributable deaths for respiratory diseases, as esti-
mated by the AirQ + model. Finally, the limitations 
of the study in terms of data availability and analysis  
have been detailed.
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Introduction

Worldwide, air pollution was observed to be the fourth 
highest risk factor associated with deaths (Abbafati 
et al., 2020). Short- and long-term exposure to air pol-
lution have been linked to various health issues lead-
ing to mortality and morbidity (Gurung & Bell, 2012). 
Over the last two decades, the South Asian region has 
been witnessing a 2–6  fold increase in atmospheric 
aerosol emissions due to the burgeoning rise in pop-
ulation, energy consumption, and industrialization 
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(Lawrence & Lelieveld, 2010). The World Health 
Organization (WHO) has identified several pollution 
hotspots over the South Asian region. To combat air 
pollution in India, the National Clean Air Programme 
(NCAP) has identified 122 non-attainment cities 
(characterized by poor air quality) and has set a tar-
get of 20–30% reduction in ambient particulate pollu-
tion concentrations by the year 2024 (2017 as the base 
year; Ganguly et al., 2020).

To combat air pollution, identification of pollu-
tion sources and their share quantification plays a 
vital role. Conventional source apportionment exer-
cise (based on chemical characterization and receptor 
modeling) helps to identify and quantify the contribu-
tion of various sources to the observed ambient pol-
lution concentrations at the receptor sites. In addition, 
some statistical tools mentioned in the literature are 
able to identify the source locations by combining the 
pollutant time series and meteorological data. These 
tools include conditional bivariate probability function 
(CBPF) (Carslaw & Ropkins, 2012), concentration 
weighted trajectory analysis (CWT) (Seibert, 1994), 
and principal source contributing function (PSCF) 
(Ashbaugh et  al., 1985). In addition, to decompose 
the high-resolution time series pollutant data into 
local and regional shares, techniques such as “succes-
sive moving average subtraction method” (Watson & 
Chow, 2001) and “under-writing function” were pro-
posed and implemented in some earlier studies (e.g., 
Kumar et al., 2018).

Bengaluru, a South Indian inland city, was also 
labeled as one of the non-attainment cities due to 
its high particulate pollution levels. Emissions from 
transportation, industries, open waste burning, and 
domestic cooking are the largest contributors to PM 
pollution in Bengaluru (Guttikunda et  al., 2019). 
Combustion emissions are generally rich in car-
bonaceous aerosols, nitrogen oxides, and volatile 
organic compounds. These gases act as precursors 
to secondary particulates and ozone  (O3). Besides 
its health impacts, black carbon (BC) is recog-
nized as the second most important climate forcing 
agent (Bond et  al., 2013). In Bengaluru, few stud-
ies have reported ambient  PM2.5 (Both et al., 2011; 
Gouda et  al., 2021; Sreekanth et  al., 2021) and BC 
(Babu et al., 2002; Satheesh et al., 2011), based on 
short-term and long-term observation campaigns. In 
Urban Bengaluru and surrounding regions, Vreeland 
et  al. (2016) reported high organic carbon (OC) to 

elemental carbon (EC) ratios (OC/EC values as high 
as 1500) for trash-burning emissions compared to 
that of the ambient atmosphere.

In the present study, in addition to reporting the 
temporal variations in  PM2.5, BC, and  O3, results 
obtained by the application of statistical techniques 
on the time series data to identify the potential 
source locations are also presented. Local–regional 
and fossil fuel-biomass burning contributions to 
the observed BC are also investigated. Finally, the 
health impacts (long term) due to long-term  PM2.5 
exposure are studied using the AirQ + software 
developed by the World Health Organization (WHO, 
2018).

Materials and methods

Study site

Simultaneous measurements of ambient  PM2.5, BC, 
and  O3 were carried out for a period of 1 year (July 
2019 to June 2020) using reference-grade instru-
mentation installed on the terrace of the Center for 
Study of Science, Technology, and Policy (CSTEP) 
building. The sampling height was ~ 10  m above 
ground level and ~ 150 m away from the main road. 
CSTEP (13.04°N; 77.57°E) is located in the north-
ern part of Bengaluru. The city of Bengaluru is the 
capital of Karnataka, with a population of around 
12.7 million in 2021 (www. macro trends. net). Ben-
galuru Urban observed rapid growth in terms of 
urbanization and population density during the last 
two decades (a 46.7% growth rate in population dur-
ing 2001–2011 as per Census 2011). Consequently, 
the city has been experiencing a vast increase in the 
number of motor vehicles, especially two-wheelers. 
In terms of climate, Bengaluru’s climate is classified 
as dry tropical Savanna type with an average maxi-
mum and minimum temperature of ~ 36 and 14  °C, 
respectively. Humidity ranges between 35 and 80% 
and the average total annual rainfall is ~ 540  mm 
(Rajashekara, 2020). Bengaluru experiences four dis-
tinct seasons, namely, winter (December–February), 
summer (March–May), monsoon (June–September), 
and post-monsoon (October–November). The geo-
graphical location of the measurement site is shown 
in Fig. 1.

http://www.macrotrends.net
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Instrumentation

PM2.5

Near-real-time  PM2.5 was measured using a Beta 
Attenuation Monitor (BAM-1022, Met One Instru-
ments, Grants Pass, USA). As the name suggests, 
the instrument utilizes the beta attenuation tech-
nique to quantify  PM2.5. The difference in the beta 
particle (source:  C14) attenuation before and after 
the aerosol sample deposition on the filter tape  is 
converted into  PM2.5 using Beer-Lambert’s law. 
The flow rate of the instrument is 16.7 LPM. An 
inbuilt heating arrangement controls the humidity 
of the sampled air. The detection limit of the BAM-
1022 is < 1  µg   m−3 (24  h), and the span measure-
ment ranges from −15 to  104 µg  m−3. BAM-1022 is 
a United States Environmental Protection Agency 
(USEPA)-certified federal equivalent method 
(FEM) class instrument. Periodical flow calibra-
tion of BAM-1022 was performed using a volumet-
ric flow calibrator (The BGI deltaCal, Mesa Labs, 
Lakewood, USA).

BC

A rack mount Aethalometer (AE33, Aerosol d.o.o. 
Ljubljani, Slovenia) was used for measuring absorb-
ing aerosol mass concentration at seven wavelengths 
(370, 470, 520, 590, 660, 880, and 950  nm). The 
instrument measures the optical absorption of the aer-
osol sample collected on the filter tape and converts 
it into mass concentrations using factory calibration 
coefficients. The absorbing mass concentration esti-
mated at 880 nm was considered as BC (or equivalent 
BC). The dual spot technology incorporated in AE33 
compensates for the filter loading artifact. At CSTEP, 
the aethalometer was operated with a 2.5-μm size 
cut cyclone and rain/insect guard, and at a flow rate 
of 2 L per min (LPM). The data averaging and log-
ging interval was set to 1-min time duration. Using 
the spectral measurements, AE33 apportions the total 
BC into fossil fuel  (BCff) and biomass burning  (BCbb) 
contributed mass concentrations. Stability and zero 
checks of AE33 were performed on a monthly basis. 
A detailed description of the instrument and its work-
ing principle can be found in Drinovec et al. (2015).

Fig. 1  Map showing the locations of CSTEP (red star) and Hebbal-CAAQMS (blue star)
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O3

The surface  O3 was measured using a dual-beam 
ozone monitor (205 Dual Beam Ozone Monitor, 2B 
Technologies, Boulder USA). This monitor works 
on the principle of UV (254  nm) absorption to 
quantify ozone with a dynamic range of 0–250 ppm. 
The accuracy of the  O3 measurements is greater of 
1 ppb or 2% of the measurement. The measurement 
resolution is 0.1 ppb. The nominal flow rate of the 
instrument is ~ 1.8 LPM. The Model 205 Ozone 
monitor was designated as a FEM instrument by 
USEPA. The instrument was configured to log the 
data at 1-min averaging intervals. A portable ozone 
calibration source (Model 306 Ozone Calibration 
Source, 2B Technologies) was used to calibrate the 
ozone monitor periodically.

Meteorological parameters

One-minute averaged data on ambient meteorologi-
cal variables was collected using a Davis weather sta-
tion (Vantage Pro2, Davis Instruments Corporation, 
Hayward, USA). The weather station includes a cup 
and vane anemometer (for the measurement of wind 
speed and direction), rain collector, temperature, and 
humidity sensors.

Pollution control board (PCB) data

Public data on  PM2.5 and  O3 from the Continu-
ous Ambient Air Quality Monitoring Stations 
(CAAQMS) installed in Bengaluru were also used 
for comparative analysis. Data on gaseous pollut-
ants from Hebbal CAAQMS was included to per-
form principal component analysis. CAAQMS data 
was downloaded from the CPCB dashboard (https:// 
app. cpcbc cr. com/ ccr/#/ caaqm- dashb oard- all/ caaqm- 
landi ng/ data). As these datasets are used for regu-
latory purposes, reference-grade instruments were 
used to measure the pollution levels. A thorough 
check on the data quality was conducted using the 
“pollucheck” application (Upadhya et  al., 2021). 
The quality check criteria included the removal 
of outliers and impractical values. The amount of 
data labeled as spurious and subsequently removed 
was < 2% of the total.

Statistical tools and techniques

Principal component analysis

The principal component analysis (PCA) is a simple 
tool to visualize the total variation of the variables in a 
reduced number of dimensions. PCA is most commonly 
used in air pollution research to identify the critical 
pollutants, their sources, and the association between 
environmental variables and pollutants (e.g., Banerjee 
et al., 2015). For performing PCA, the minimum num-
ber of samples (n) required is based on the condition 
n > 30 + {(X + 3)/2}, where X is the number of variables 
(Henry et al., 1984). In the present study, temperature, 
relative humidity (RH),  BCbb,  BCff,  O3,  PM2.5,  NO2, 
 NH3,  SO2, and CO were considered as the variables for 
PCA. The principal components were identified using 
varimax rotation with Kaiser normalization. Eigenvalue 
of > 1 was the criterion for considering the principal 
components, and a loading value of 0.7 was chosen as 
the minimum level of significance for variables under 
each principal component (Sarkar & Khillare,  2013; 
Nirmalkar et al., 2015). PCA was performed using the 
R package “psych” (Revelle, 2016).

Local and regional contribution

To investigate the contribution of local (< 0.5  km 
radius region) and regional sources to the observed 
BC, we applied a successive moving average subtrac-
tion technique proposed by Watson and Chow (2001). 
As this methodology demands high temporal resolu-
tion measurements, in this study, it was applied only 
to BC measurements (made at one-minute averaging 
and logging intervals). To date, this technique has 
been applied on  PM2.5 (Apte et al., 2011; Both et al., 
2011; Kumar et  al., 2018) only. In this approach, 
the 1-min average BC values are smoothed at mul-
tiple timescales (360 min, 180 min, 90 min, 45 min, 
and 15  min), always retaining the lowest values. 
Smoothed concentrations after removing the short-
duration spikes were interpreted as regional (and 
long-range transported) share.

Conditional bivariate probability function (CBPF)

To identify the potential local source regions of BC 
and  PM2.5, the CBPF technique was employed. The 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
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CBPF is a receptor model (Uria-tellaetxe & Carslaw, 
2014) that can identify the emission source regions 
based on wind speed and wind direction. CBPF is an 
extension to conditional probability function (CPF), 
where a third variable (wind speed) is coupled with 
the CPF to identify and characterize the local sources. 
The CBPF was computed as shown below:

where m∆θ, ∆u is the number of samples within 
wind direction interval ∆θ and wind speed interval 
∆u, characterized with a pollution concentration C 
between the interval y and x. The n∆θ, ∆u is the total 
number of samples in that specified wind speed and 
wind direction interval. CBPF was computed using 
the freely available R-package “openair”.

Concentration weighted trajectories (CWT)

To identify the long-range transport pathways and 
the relative contribution of each spatial grid to the 
observed receptor site pollutant concentration level, 
5-day isentropic air mass back trajectory analysis 
and CWT were performed, respectively. An altitude 
of 500 m above ground level was considered for the 
trajectory analysis. The TrajStat software (version 
1.2.2.6) was used for performing the trajectory cluster 
analysis and CWT. The average weighted concentra-
tion in each grid was computed as shown below:

where, i, j are the grid indices, l is the index of the tra-
jectory,  Cl is the concentration observed at sampling 
location (receptor site) on the arrival of trajectory l, M 
is the total number of trajectories, and Tijl is the resi-
dence time (time spent) of the trajectory l in the grid 
cell. A high value for  Cij implies that the air parcels 
traveling over the grid cell would be, on average, asso-
ciated with high concentrations at the receptor site. A 
grid size of 0.5° was chosen for the CWT analysis.

Health risk assessment

The health risk assessment due to long-term exposure 
to  PM2.5 and  O3 was estimated using AirQ + v.2.1.1 
(WHO, 2018). Mortality due to all (natural) causes 

(1)CBPFΔθ,Δu =
mΔθ,Δu|y≥C≥x

nΔθ,Δu

(2)Cij =
1

∑M

l=1
Tijl

∑M

l=1
ClTijl

(age: 15 +), acute lower respiratory illness (ALRI; 
age: < 5), chronic obstructive pulmonary disorder 
(COPD; age: 15 +), lung cancer (LC; age: 15 +), 
ischemic heart disease (IHD; age: 25 +), and stroke 
in adults (age: 25 +) were estimated using the 2019 
annual  PM2.5 derived by combining  PM2.5 from 
CAAQMS stations and CSTEP data. For this analy-
sis, the calendar year of 2019 was considered. The 
disease-specific baseline mortality rate for Karna-
taka state (for 2019) was adopted from Global Bur-
den of Disease (GBD) India compare data visuali-
zation (ICMR, PHFI, & IHME,  2019). The default 
relative risk (RR) values available in the AirQ + soft-
ware for each health endpoint were retained for the 
analysis. The RR values in AirQ + were derived 
from HRAPIE (2013). Bengaluru population data 
for 2019 was obtained from population.com. Demo-
graphic data for India was obtained from the United 
Nations Department of Economic and Social Affairs  
(https:// popul ation. un. org), World Prospect Population 
2019. The age group-specific population of Bengaluru 
was estimated assuming that the demography of the 
city is the same as that of India. The cutoff value of 
 PM2.5 was considered as 2.4 µg  m−3, according to the  
GBD 2015/2016 (Cohen et al., 2017).

Results and discussion

Temporal variations

The study period mean (± standard deviation) of  PM2.5 
and BC are 26.8 ± 11.5 µg   m−3 and 5.6 ± 2.8 µg   m−3, 
respectively. BC data during monsoon is not avail-
able due to instrument malfunctioning, and the aver-
age mentioned here might be an overestimate of the 
annual mean. The observed  PM2.5 mean was below the 
national annual permissible limit (40  µg   m−3). How-
ever, the observed  PM2.5 was ~ 5.4 times higher than 
the recent WHO annual standard (5 µg  m−3). Seasonal 
mean  PM2.5 was observed to be the highest in win-
ter (33.5 ± 10.6  µg   m−3), followed by summer, post-
monsoon, and monsoon (Fig. 2). The highest seasonal 
mean BC was observed for the post-monsoon season 
(5.9 ± 3.3  µg   m−3) (Table  1). The factors responsible 
for the observed seasonal pattern in PM were discussed 
in several earlier studies (e.g., Prabhu et  al., 2020) 
and are not repeated here. Kruskal–Wallis test (non-
parametric one-way ANOVA) revealed statistically 

https://population.un.org
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significant (p < 0.05) differences in  PM2.5 and BC lev-
els across seasons.  PM2.5 did not exhibit any significant 
weekday-weekend variations, while BC during week-
days was ~ 10% (Fig. S1) higher than that on weekends.

On diurnal scales,  PM2.5 and BC exhibited two 
peaks—a rush hour and a nocturnal peak (Fig. 3). Sev-
eral investigators have attributed the diurnal variation 
to the combined effect of meteorological and anthro-
pogenic activities (Babu et al., 2002; Soni et al., 2019). 
During the study period,  BCff contributed ~ 88% to the 
observed total BC. The seasonality in  BCff resem-
bled that of the total BC, while no seasonality was 
observed in  BCbb. The contribution of BC to  PM2.5 

was observed to be high during post-monsoon (25%), 
followed by winter (17%) and summer (14%). The 
diurnal variation in the BC/PM2.5 ratio revealed two 
peaks—one in the morning during 0500 to 0600 h and 
another in the evening during 1800 to 1900 h.

The annual mean  O3 was 25.5 ± 12.4 ppb. The highest 
seasonal mean was observed for summer (37.4 ± 11.6 ppb), 
followed by winter (31.0 ± 7.8  ppb), post-monsoon 
(24.1 ± 7.8 ppb), and monsoon (11.3 ± 3.7 ppb). High  O3 
during summer can be attributed to the high intensity of 
solar radiation reaching the earth’s surface, longer daylight 
hours, and higher surface temperatures enhancing photo-
chemical  O3 production (Peshin et al., 2017). The diurnal 

Fig. 2  Seasonal variations in daily-PM2.5, BC, BC/PM2.5,  O3,  BCff, and  BCbb. The 25th and 75th percentiles are represented by the 
box, the standard deviation is represented by whiskers, and the mean is represented by the solid star
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pattern of  O3 indicated higher levels during the afternoon, 
reaching its peak value at ~ 1400 h. The  O3 builds up after 
sunrise, coinciding with the increasing solar radiation 
(Mahapatra et al., 2012). The diurnal variation in PM and 
 O3 observed the opposite pattern.

O3 versus particulate matter

Relationships between  O3 and fine PM at hourly and 
daily scales were investigated. Figure  4 indicates a 
negative correlation between  O3 and BC (a similar rela-
tionship is observed between  O3 and  BCff). Grossly, a 
1 µg   m−3 increase in hourly  BCff was associated with 
a reduction of ~ 1.8 ppb of hourly  O3 (p < 0.05), while 
a 1 µg  m−3 increase in daily  BCff was associated with 
a reduction of ~ 0.5 ppb of daily  O3 (p < 0.05). A simi-
lar observation was reported in Hyderabad city, where 
every 1  µg   m−3 increase in BC  causes a reduction 
of ~ 3.5 µg  m−3 of  O3 (Latha & Badarinath, 2004). Gen-
erally, soot exhibits a large surface for heterogeneous 
interactions and chemical transformations of atmos-
pheric constituents, especially for  O3 and  NOx (Lary 
et al., 1997; Monge et al., 2010). Major sources of  BCff 
being vehicular and industrial emissions,  NOx, CO, and 

VOCs, are co-emitters. These gases undergo a series 
of complex non-linear and sunlight-driven reactions, 
which either enhance or deplete the surface ozone abun-
dance in the atmosphere. We observed an overall weak 
positive correlation between  O3 and  PM2.5 on an hourly 
and daily basis. Grossly, a 1 µg  m−3 increase in hourly 
 PM2.5 was associated with an increase of ~ 0.2  ppb 
of hourly  O3 (p < 0.05), while a 1 µg   m−3 increase in 
daily  PM2.5 was associated with an increase of ~ 0.6 ppb 
of daily  O3 (p < 0.05). Given the contrasting underly-
ing mechanisms driving the relationship between  O3 
and  PM2.5 during cold and hot seasons (e.g., Jia et al., 
2017), we investigated seasonal relationships. No sig-
nificant difference was observed in the  O3 and fine PM 
relationships across the summer and winter seasons. 
The slope and R2 were almost the same during winter 
and summer (Figs. S3 and S4). This could be partially 
due to the observed shallow gradients in temperature 
(and sunlight) across the seasons over the study loca-
tion. The mean temperature during winter and summer 
was observed to be ~ 23 °C during the study period. The 
correlations observed here are weak but were statisti-
cally significant.

Table 1  Monthly, seasonal, and annual mean (± standard deviation) of pollutants measured at CSTEP (NA denotes not available)

Month/sea-
son/annual

PM2.5 (µg 
 m−3)

BC (µg  m−3) BCff (µg 
 m−3)

BCbb (µg 
 m−3)

O3 (ppb) Temperature 
(°C)

Relative 
humidity (%)

Wind speed 
(m  s−1)

JUL (2019) 18.1 ± 2.8 NA NA NA 11.6 ± 1.8 24.5 ± 1.2 70.9 ± 17.9 2.1 ± 0.3
AUG (2019) 17.8 ± 3.4 NA NA NA 9.0 ± 1.9 23.9 ± 0.7 77.7 ± 5.3 2.3 ± 0.6
SEP (2019) 19.0 ± 6.1 NA NA NA 10.5 ± 4.5 24.4 ± 0.9 78.0 ± 5.2 1.6 ± 0.8
OCT (2019) 20.9 ± 8.7 6.4 ± 3.4 6.0 ± 3.2 0.4 ± 0.2 21.1 ± 6.7 24.1 ± 1.0 76.1 ± 4.5 0.9 ± 0.4
NOV (2019) 32.3 ± 16.9 5.3 ± 3.3 4.7 ± 3.0 0.6 ± 0.9 26.8 ± 7.8 23.9 ± 1.1 67.8 ± 6.3 1.0 ± 0.4
DEC (2019) 29.8 ± 10.8 4.6 ± 1.7 4.1 ± 1.2 0.4 ± 0.1 27.2 ± 5.3 22.1 ± 0.7 68.4 ± 5.9 1.4 ± 0.3
JAN (2020) 36.4 ± 12.4 7.4 ± 3.3 6.7 ± 3.0 0.7 ± 0.3 30.7 ± 7.3 22.4 ± 1.2 54.4 ± 8.6 1.0 ± 0.5
FEB (2020) 35.5 ± 6.7 5.6 ± 1.7 4.9 ± 1.6 0.7 ± 0.2 38.2 ± 6.2 24.5 ± 0.8 47.8 ± 5.8 1.4 ± 0.4
MAR (2020) 35.4 ± 10.5 5.8 ± 3.0 5.1 ± 2.9 0.7 ± 0.2 37.0 ± 4.8 26.0 ± 0.9 50.9 ± 3.2 0.9 ± 0.5
APR (2020) 29.8 ± 8.9 3.4 ± 0.8 2.5 ± 0.6 0.9 ± 0.3 40.3 ± 6.3 NA NA NA
MAY (2020) 25.6 ± 5.4 NA NA NA 36.4 ± 6.6 NA NA NA
JUN (2020) 17.7 ± 3.6 NA NA NA 14.4 ± 2.8 NA NA NA
MONSOON 18.2 ± 4.2 NA NA NA 11.3 ± 3.7 24.2 ± 0.9 75.1 ± 10.1 2.0 ± 0.7
POST-MON-

SOON
26.5 ± 14.5 5.9 ± 3.3 5.6 ± 3.2 0.5 ± 0.3 24.1 ± 7.8 24.1 ± 1.1 72.0 ± 6.8 1.0 ± 0.4

WINTER 33.5 ± 10.6 5.7 ± 2.5 5.1 ± 2.3 0.6 ± 0.3 31.0 ± 7.8 23.4 ± 1.3 59.7 ± 11.0 1.2 ± 0.4
SUMMER 30.2 ± 9.9 4.8 ± 2.6 4.0 ± 2.5 0.8 ± 0.3 37.4 ± 11.6 26.1 ± 0.9 51.2 ± 3.2 0.7 ± 0.5
ANNUAL 26.8 ± 11.5 5.6 ± 2.8 4.9 ± 2.7 0.6 ± 0.3 25.5 ± 12.4 23.8 ± 1.2 66.9 ± 12.8 1.4 ± 0.7
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Comparison with CAAQMS data

In this section, we compared the CSTEP-measured 
 PM2.5 and  O3 data with that of the publicly available 
CAAQMS regulatory measurements (Fig.  5).  PM2.5 
data from eight CAAQMS stations were available dur-
ing the study period, while  O3 was available for seven 
stations. Annual distributions of daily mean pollut-
ant values are shown in Fig.  5. The color of the box 
(in Fig. 5) indicates the different land-use types of the 
monitoring locations. Weak spatial variation in  PM2.5 
was observed across locations within Bengaluru. The 
central tendencies (mean and median) of the  PM2.5 dis-
tributions for kerbside and residential locations were 

almost the same (mean: ~ 26 µg  m−3), while the indus-
trial locations (Peenya and BWSSB) observed higher 
values (~ 37  µg   m−3) (see Table  2 for more details). 
The differences in the daily  PM2.5 values across resi-
dential and kerbside locations were statistically non-
significant. Seasonal variations indicated the maximum 
concentrations during winter in all the sites (except 
over Bapuji Nagar and BTM layout, which showed 
the maximum concentration during post-monsoon). 
Seasonal differences in daily  PM2.5 were found to be 
statistically significant (p < 0.05). Similarly, the central 
tendencies of the daily mean  O3 distribution for kerb-
side and residential locations were almost the same 
(~ 36  µg   m−3), while the BWSSB industrial location 

Fig. 3  Seasonal diurnal variation in  PM2.5, BC, BC to  PM2.5 ratio,  O3,  BCff, and  BCbb
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observed lower values (~ 18 µg  m−3). CSTEP  O3 data 
was converted from ppb to µg  m−3 for this comparison 
(considering the relation 1 ppb = 1.97 µg  m−3).  O3 data 
for the Peenya industrial site was not available during 
the study period. Again, differences in the daily  O3 val-
ues across residential and kerbside locations were sta-
tistically non-significant. Seasonal variation revealed 
maximum  O3 concentrations during summer (Table 2) 
in all the sites (except over Hombe Gowda, which 
showed the maximum concentration during winter). 
Seasonal differences in daily  O3 were found to be sta-
tistically significant (p < 0.05).

PCA

We used hourly averaged pollution data for performing 
the PCA analysis. For this exercise, we combined data 
(temperature, RH,  BCbb,  BCff,  O3, and  PM2.5) collected 
at CSTEP, and other pollutant data  (NO2,  NH3,  SO2, 

and CO) from the nearest CAAQMS (Hebbal; ~ 2.2 km 
aerial distance from CSTEP, Fig. 1). Before perform-
ing PCA, we compared the common pollutant meas-
urements  (PM2.5 and  O3) from both the locations 
(CSTEP and Hebbal) and found that they are highly 
correlated (Fig.  S2, Pearson’s R =  > 0.7). The results 
of PCA analysis revealed that a cumulative variance 
of the data of ~ 76% is associated with four principal 
components. Details of the four principal components, 
eigenvalues, and the cumulative variance are provided 
in Table 3. PC-1 (first principal component) accounted 
for ~ 26% of the total data variance. The variables with 
a loading value greater than 0.7 in PC-1 include  O3 
and temperature (positively correlated). This denotes 
the sunlight-driven formation of  O3 in the atmosphere. 
PC-2 includes  PM2.5,  BCff, and  BCbb. This component 
signifies anthropogenic and combustion-related emis-
sions. The PC-3 indicates the role of fuel combustion 
(including vehicular emissions) contribution towards 

Fig. 4  Association between  O3 and fine particulate matter. The red line indicates the linear least-square fit
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the covariance in CO and  NO2 (Mohammad et  al., 
2015). The PC-4 denotes the  SO2 pollution, which can 
be from coal-burning activities. Similar principal com-
ponents were also observed in earlier studies (Singh & 
Sharma, 2012; Mallik et al., 2014; Saxena et al., 2016; 
Kumari et al., 2018).

Local and regional BC

For temporal decomposition of the real-time BC, 
the successive moving average subtraction technique 
was employed, which segregated the absolute BC 
into local and regional components. From the analy-
sis, the study period mean local and regional BC was 
observed to be 1.3 ± 0.9 and 4.2 ± 1.9 µg  m−3, respec-
tively (Figs.  6, S5  and S6). This shows that around 
78% share of BC was from the regional contribution 
(> 0.5 km radius). Given the urban nature of the study 

Fig. 5  Comparison of daily mean  PM2.5 and  O3 across CSTEP 
and PCB sites
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city (spread over ~ 740  km2), BC pollution from other 
parts of the city and long-range transported compo-
nents can have a greater influence on the observed 
concentrations. Similar analysis over different parts 
of the city can help us understand the spatial varia-
tion in the local component. The contribution of local 
BC to the absolute BC was minimum during Febru-
ary (~ 20%), while the maximum was observed dur-
ing October (~ 30%). Seasonally, the contribution was 
maximum (~ 25%) during post-monsoon, while it is 
comparable between winter and summer (~ 20%).

Moreover, the successive moving average subtrac-
tion technique was employed to segregate absolute 
 BCbb into local and regional components. Analy-
sis revealed the mean daily local and regional  BCbb 
as 0.2 ± 0.1 and 0.4 ± 0.2  µg   m−3, respectively. This 
shows that around 62% share of  BCbb was from the 
regional contribution. The contribution of local-BCbb 
to the absolute  BCbb was minimum during March 
(~ 30%), while the maximum was observed during 

Table 3  Results of varimax rotated factor analysis

(Factor loading > 0.7 are highlighted in bold)

Variable Component

PC-1 PC-2 PC-3 PC-4

Temperature 0.85 −0.07 0.14 −0.04
RH −0.92 −0.11 −0.14 −0.02
BCbb 0.08 0.76 0.45 −0.06
BCff −0.21 0.79 0.29 0.04
O3 0.80 −0.11 −0.38 0.10
PM2.5 0.06 0.87 −0.06 0.24
NO2 −0.01 0.12 0.83 0.33
NH3 −0.47 0.05 0.09 0.64
SO2 0.22 0.12 0.05 0.74
CO 0.04 0.23 0.81 −0.09
Eigenvalue 2.9 2.5 1.1 1.0
Cumulative variance 25.5 46.3 64.4 75.9

Fig. 6  Panel plot presenting the temporal variations in daily mean BC, BC-local, BC-regional, and BC-local/BC (PoM denotes post-
monsoon; Win. denotes winter; Sum. denotes summer)
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October (~ 51%). Seasonally, the local contribution 
was maximum (~ 46%) during post-monsoon, while it 
is comparable between winter and summer (~ 34%). 
Similarly, the mean daily local and regional  BCff was 
observed as 1.0 ± 0.8, and 3.8 ± 1.8  µg   m−3, respec-
tively. This shows that around 76% share of  BCff was 
from the regional contribution. Local-BCff contribu-
tion to the observed total  BCff was minimum during 
February (~ 15%), while the maximum was observed 
during October (~ 30%). Seasonally, the contribution 
was maximum (~ 23%) during post-monsoon, while it 
is comparable between winter and summer (~ 17%).

CBPF

The CBPF analysis for BC,  BCff, and  BCbb was per-
formed using 1-min averaged values, while CBPF for 
 PM2.5 was performed using hourly averaged values. 
The CBPF results were presented for concentrations 
in the percentile range of 50 and 98 (Fig.  7). The 
number of data points available for CBPF analysis 
of  PM2.5 and BC were ~ 8000 and ~ 200,000, respec-
tively. From Fig.  7, it can be noticed that the direc-
tions of the potential source regions contributing to 
the receptor site  PM2.5 and BC are different. Sources 
potentially contributing to  PM2.5 were located in the 
north and northwestern directions (coinciding with 
dense residential and commercial settlements) to 
the monitoring site. For BC, sources were towards 
the east and southeastern directions. A few isolated 
sources are observed for BC, while for  PM2.5, the 

sources were spread over a larger area. The BC and 
 BCff source directions and locations were almost 
similar. They were observed to coincide with that 
of traffic junctions, major roads, and flyovers. The 
source locations of  BCbb were ubiquitous. Roadside 
burning of dry leaves is a common practice in Ben-
galuru, which might be the reason for the observed 
source pattern of  BCbb. In a similar analysis over 
Delhi, Dumka et  al. (2019) observed distinct source 
locations for different pollutants. The CBPF analysis 
of  O3 is presented in Fig. S7. From the figure, it was 
inferred that the sources of  O3 are towards northwest-
ern directions of the study site.

CWT 

The trajectory cluster and CWT analysis for BC and 
 PM2.5 are presented in Fig. 8. The CWT analysis of 
BC revealed that the potential long-range source 
regions (mostly the neighboring states) influencing 
the observed BC are towards the NNE (north-north-
east; contributing ~ 7  µg   m−3 and above) and NNW 
(north-northwest) directions (note the unavailability 
of BC data for the monsoon months). Similarly,  PM2.5 
CWT analysis revealed potential source contributions 
(> 30 µg   m−3) from regions (spanning up to Central 
India) in the NNE direction of the study site. The con-
tributions from NNE regions were primarily during 
the post-monsoon season. Moderate contributions to 
BC and  PM2.5 were observed from the Bay of Bengal 
region (mostly during the winter), while weak contri-
butions to  PM2.5 were observed from locations in the 
Arabian Sea (during monsoon). The CWT analysis 
of  O3 is presented in the Fig. S8. From the figure, it 
was observed that the potential source contributions 
(> 33 ppb) from regions in the NNE direction of the 
study site.

Health impact assessment

The estimated attributable mortality cases due to LC 
and COPD were 147 (CI: 87–210) and 3413 (CI: 
1888–5035), respectively, at a 95% confidence inter-
val (CI) (Table  4). The attributable mortality cases 
due to IHD and stroke (aged 25 +) were 3393 (CI: 
1766–5095) and 1016 (CI: 463–1605), respectively. 
The estimated number of attributable cases for IHD 
(629 (CI: 309–957)) and stroke (200 (CI: 88–318)) 
were observed to be the highest in the age group of 

Fig. 7  CBPF analysis of: (a)  PM2.5, (b) BC, (c)  BCff, and (d) 
 BCbb. The wind speed is presented in m  s−1



Environ Monit Assess         (2022) 194:211  

1 3

Page 13 of 17   211 

Vol.: (0123456789)

50–54  years. The estimated number of attributable 
cases for mortality due to ALRI in children aged 
0–5  years was 117 (CI: 83–151). Due to long-term 
exposure of  O3, the estimated number of attributable 
cases for mortality due to respiratory diseases was 
155 (CI: 56–263).

In an earlier study, Manojkumar and Srimuruga-
nandam (2021) also reported that IHD is the leading 
contributor to  PM2.5-induced mortality in Indian cities 
(viz., Chennai, Delhi, Faridabad, Gurgaon, Hyderabad, 
Kanpur, Lucknow, Nagpur, Thane, and Varanasi). The 
average IHD mortality in the analyzed cities was esti-
mated to be 4079 (3706) in the male (female) population. 
Maheshwarkar and Sunder Raman (2021) also reported 
that the IHD is the major cause of premature mortality 
in the state of Madhya Pradesh, India, responsible for 
around 52% of total deaths, followed by Stroke (~ 35%), 
COPD (~ 11%), and LC (1.2%). Compared to the above-
mentioned studies, the attributable mortality observed in 
this study was less due to the observed lower  PM2.5 in 
Bengaluru and the choice of baseline mortality data and 
RR values used for the mortality estimation.

Limitations

The current study suffers from the following limitations.

1. Part of the study period coincided with nation-
wide novel corona virus disease (COVID-19) 
lockdown, during which reduced anthropogenic 
activities—thereby, lowered pollution levels—
were observed.

2. Black carbon data was not available during the 
monsoon due to instrument malfunction.

3. Successive moving average subtraction method 
was not applied on the  PM2.5 data due to its 
coarse temporal resolution.

4. For PCA, pollutant data from CSTEP and the 
nearest CAAQMS data were combined.

5. For the health assessment, the ground-based 
point measurements from regulatory and CSTEP 
measured pollutant data were averaged to repre-
sent the city mean value. Also, the relative risk 
values were adopted (in AirQ +) from studies 
conducted outside India.

Fig. 8  Concentration-weighted trajectory (CWT) analysis of: (a) BC, and (b)  PM2.5
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Summary

The current study showcases the temporal variation 
(at various scales) in BC,  PM2.5, and  O3 and uses var-
ious statistical tools to identify the source locations 
and apportion their share to the observed receptor site 
pollution levels. Excess adult mortality due to long-
term exposure to  PM2.5 was also estimated for vari-
ous health endpoints. The major results obtained from 
this study are summarized below:

• The study period mean (± standard deviation)  PM2.5, 
BC, and  O3 in northern Bengaluru was observed 
to be 26.8 ± 11.5  µg   m−3, 5.6 ± 2.8  µg   m−3, and 
25.5 ± 12.4 ppb, respectively. Seasonal trends in BC, 
 PM2.5, and  O3 revealed maximum concentrations 
during post-monsoon, winter, and summer, respec-
tively.

• A 1 µg  m−3 increase in hourly  BCff was found to 
be associated with a reduction of 1.8 ppb of hourly 
 O3. Contrastingly, a 1  µg   m−3 increase in hourly 

 PM2.5 was found to be associated with an increase 
of 0.2 ppb of hourly  O3.

• The local contribution of BC to the observed 
receptor site BC was found to be ~ 23%. The local 
contribution during the post-monsoon season was 
found to be statistically significant from that of the 
two seasons (winter and summer).

• Four principal components accounting for 76% of 
the cumulative variance in the pollutant and mete-
orological data were identified in the PCA.

• The CBPF analysis revealed that the source loca-
tions significantly contributing to the receptor site 
BC were towards the east of the study site, while 
they were located towards the northwest for  PM2.5.

• The estimated attributable mortality due to long-
term exposure of  PM2.5 for the health endpoints 
COPD, IHD, stroke, and LC was around 3413, 
3393, 1016, and 147, respectively.

• The estimated attributable cases due to long-term 
exposure of  O3 for mortality from respiratory dis-
eases were around 155.

Table 4  Mortality 
estimates due to long-term 
exposure of  PM2.5

Age Mortality LC COPD

15–49 2989 (2014–3843) 16 (10–23) 42 (23–62)
50–69 5075 (3420–6525) 77 (46–110) 2015 (1115–2973)
70 + 5710 (3848–7341) 54 (32–77) 1356 (750–2000)
Total 13,774 (9282–17,709) 147 (87–210) 3413 (1888–5035)
Age ALRI
0–5 117 (83–151)
Age IHD Stroke
25–29 145 (79–202) 25 (11–37)
30–34 131 (71–188) 23 (11–35)
35–39 112 (58–163) 20 (9–31)
40–44 92 (47–135) 16 (7–25)
45–49 76 (41–110) 14 (6–20)
50–54 629 (309–957) 200 (88–318)
55–59 497 (268–736) 154 (73–238)
60–64 375 (195–560) 117 (55–178)
65–69 262 (137–399) 82 (34–128)
70–74 546 (279–842) 184 (86–284)
75–79 309 (167–467) 102 (50–165)
80–84 150 (80–227) 55 (22–105)
85–89 53 (26–82) 18 (8–30)
90–94 13 (7–21) 5 (2–9)
95 + 3 (1–4) 1 (0.4–1.5)
Total 3393 (1766–5095) 1016 (463–1605)
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