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A B S T R A C T

The intermittent nature of renewable energy sources (RESs) brings formidable challenges in the operation of
power system. Long-term energy system planning models overlook the impact of renewable intermittency on
system operations due to the computational burden associated with large model size and long planning horizon.
Hence, strategies such as soft-linking multiple models are developed, but they do not assure the convergence and
optimality of such incoherent modeling framework. In this context, this paper utilizes unit commitment (UC)
extension of TIMES modeling framework to integrate operational constraints directly in a long-term power
system planning model. This strategy eliminates the complexity of handling multiple models. Results indicate
that incorporation of UC constraints improve the performance of conventional generators in terms of increased
capacity utilization, and help to assess flexibility requirements with high RESs. Energy storage provides the
balancing and flexibility needs with stringent generator constraints. Sensitivity analysis shows that improved
flexibility of thermal generators enables increased renewable penetrations.

1. Introduction

Increased climatic concern calls for escalating penetration of vari-
able renewable energy sources (RES) in the power system to dec-
arbonize the electricity sector. Conventionally, the uncertainty of load
dynamics and contingency are major challenges for reliable grid op-
erations [1]. However, RESs are associated with variability and un-
certainty due to their intermittent nature. This adds to the complexity
of operating power system, increases reserve capacity requirements and
inflates the cost of ancillary services [2–5]. Most long-term planning
studies often disregard these challenges and consequently, the invest-
ments required to operate the electricity grid steadily are under-
estimated [6].

The need for long-term planning at the regional and national level,
increasing concern of climate change and optimal use of energy re-
sources are the reasons that make it essential to develop energy models.
These models provide a method for scientific analyses of the impact of
future technologies on the energy system and serve as a decision-
making tool for policymakers. They may analyze the whole energy
system or may be used for a detailed study of a particular energy sector
(e.g., electricity, transportation, industry, and so forth). A

comprehensive planning study of the electricity sector is referred to as
power system planning which is the process of deciding to add new/
upgrade existing power system elements to satisfy the foreseen future
loads [7]. Power system planning studies are often classified based on
the time horizon of the model: long-term and short-term. Long-term
planning studies have a large time horizon (5 years to a few decades),
and they deal with generation and transmission expansion planning,
policy development, and investment decisions. On the contrary, short-
term planning studies deal with issues such as unit commitment, eco-
nomic dispatch, power flow and, day ahead market and have a time
horizon of up to 1 year [7,8].

Long-term planning models give an insight into possible energy
scenarios and have limited temporal details due to large size and
planning horizon [9]. Due to associated computational burdens these
models do not consider the short-term operational constraints and may
present oversimplified results, which have adverse impacts on planning
decisions. They can overestimate RES capacity in the system and un-
derestimate flexible resources [10]. Furthermore, RES generation and
electricity demand are time-dependent (seasonal and diurnal variation),
and a model with low temporal resolution cannot capture these dy-
namics. In addition to this, the net-load variations increase with
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increasing RES penetration, and this compels conventional generators
to change their outputs in proportion to the variations. This change in
output causes frequent cycling of the baseload power plants (mostly
coal power plants) which have thermal and mechanical operational
constraints and it impairs their efficiency and operational life.

To address the above drawbacks, studies show that integrating unit
commitment constraints and increasing the time resolution of a plan-
ning model can significantly alter the generation mix [6,11,12]. These
impacts spurred many modelers to integrate detailed operational con-
straints in the planning model. An operational problem such as main-
tenance scheduling can be simultaneously considered in long-term
planning, with reasonable computational efforts [13,14]. However, it is
possible only for a medium-sized power system.

An iterative approach may be used to integrate operational con-
straints in a long-term planning model with high RES penetration [15].
A widespread practice is to soft-link a power system planning model
with a dedicated short-term operational model [10,16,17]. The soft-
linking technique can be used to study the impact of high RES pene-
tration on power system operation. This technique improves the tech-
nical feasibility of planning portfolio as the operational constraints are
considered along with long-term targets [10]. TIMES is widely used to
generate a long-term energy planning model and soft-linked with other
short-term operational models [18–20]. An Open Source Energy model
system is compared with a soft-linked model TIMES-PLEXOS but the
authors do not make any qualitative statement about the results [21].
Since the basic functioning of two soft-linked models may not coincide,
it does not guarantee convergence and an optimal solution [22].

Incorporating temporal and technical details of the generating units
within an energy system model can reduce the complexity and addi-
tional efforts in building and handling two separate models. These
constraints restrict the flexibility of the system to practical conditions
and restrain excessive cycling of conventional generators. This ne-
cessitates a rise in flexibility resource requirement to integrate RESs.
Hence, direct integration of technical constraints can address the op-
erational challenges arising due to RE intermittency and required
flexibility by accounting for the physical behavior of generators in long-
term planning model.

India has a high solar and wind potential and exploiting these re-
sources is an apparent step to curb its energy deficiency along with
meeting its INDC targets [23,24]. Several national-scale long-term en-
ergy system planning studies have been undertaken to formulate po-
licies and initiatives for sustainable growth [25–28]. Various modeling
techniques have been used to forecast electricity demand, find the op-
timum energy mix for electrical power supply, analyze the role of re-
newables for CO2 emissions reduction pathways for India [29–33]. The
modeling frameworks used in these studies are MARKAL, TIMES, LEAP
and other macro-economic models. These studies consider spatial
granularity at national level and do not account for regional behaviors
(e.g. inter-regional energy trade, RES potential variation). Primary
focus of these studies is to obtain a least-cost energy system, but often
short-term operational aspects of power systems are not considered.
They neglect the operational challenges and flexibility requirement of
the power system associated with high RES penetration. The models
used in these studies usually employ coarse time resolution. Even when
temporal resolution is increased, they do not capture the short-term
operational dynamics, such as ramping limits, minimum load levels of
generators, etc. Due to this inherent limitation, they may not present a
realistic future energy scenario [34]. Therefore, since the generation
portfolio of India is expected to have a large share of intermittent RES;
the system planning methodology also needs to be upgraded to account
for the operational challenges.

In this study, TIMES energy system model generator is used to de-
velop a long-term power system planning model with explicit re-
presentation of power generating technologies and RES potential. The
impacts of short-term operational constraints in a long-term planning
model are analyzed using the in-built unit commitment extension of

TIMES. This feature helps to overcome the difficulties of soft-linking
multiple models. UC parameters such as ramp rates, minimum load
level, start-up time & cost, minimum up & downtime, and maximum
non-operational time, are considered in this study. Partial load effi-
ciency loss is also modeled and its impact is analyzed. The overall aim
of the study is to capture the dynamics of RESs and operations of
conventional generators in a long-term planning framework. Section 2
describes the methodology used in developing the model. Section 3
discusses the input data and model settings followed by results and
discussion in section 4. Section 5 provides a conclusion to the study.

2. Methodology

A methodology is proposed to depict the impact of short-term op-
erational constraints on the long-term system planning by direct in-
tegration of technical constraints in the planning model. This section
outlines the overall model structure, selection of time resolution and
the method to integrate UC constraints.

2.1. Model structure

The Integrated MARKAL-EFOM System (TIMES) is an energy model
generator developed by Energy Technology System Analysis Program
(ETSAP) of the International Energy Agency to conduct in-depth energy
and environmental analysis [35]. It is a technology-rich, bottom-up
model generator, which uses linear-programming to produce a least-
cost energy system as shown in Fig. 1. It can be used for the analysis of a
large energy sector or detailed study of a single energy sector [36].
TIMES has found its application in the study of long-term policy ana-
lysis of the electricity sector and to make cost-effective investments
[12]. TIMES based energy system model of electricity and domestic
heat supply has been used to analyze electric load management in
different scenarios [37]. TIMES based model has been soft-linked to
other sectoral models as discussed earlier [38]. Hence, based on ap-
plicability of the model and availability of data, we developed a power
systems model in TIMES.

The data handling shells, VErsatile Data Analyst (VEDA) family of
tools handle the extensive data utilized to build the model and develop
scenarios. VEDA-FE (Front End) handles the input data, constraints and
scenarios. The TIMES code gets input from VEDA-FE and works in
GAMS environment. The text output, produced by TIMES model, is then
read by VEDA-BE (Back End).

2.2. Selection of temporal resolution

Bottom-up long-term energy planning models are rich in technology
details and a higher temporal resolution would increase the model
overhead size. Hence, to avoid associated computational burden, sty-
lized temporal resolution is adopted. In most MARKAL based studies, a
year is divided into six timeslices while a few have attempted to con-
sider twenty timeslices [9,39–41]. Studies using OSeMOSYS modeling
platform have used 6–16 annual time slices [21,42,43]. Application of
ReEDS model has utilized 17 timeslices [44,45].

The stylized representation of timeslices limit the ability of the
model to capture the RES variability. TIMES is a successor of MARKAL
and supports more flexible timeslice definition. Timeslices in TIMES
based studies range from 4 to 48 for whole energy systems and when
only power system is considered, higher timeslices are adopted
[37,46,47]. Some TIMES based studies have adopted 288 timeslices
[12,15]. The authors choose 3 days (24 h each) from four seasons to
capture the variation in load and RESs. Further information on time
resolutions of long-term models can be found in an extensive survey
provided in Refs. [22,48,49].

However, the prerequisite for detailed modeling of operational
constraints is to preserve the temporal chronology with a sufficiently
high resolution. Hence, a short-term operational model, in which
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temporal chronology is kept intact by running optimization in rolling
horizon for complete year with hourly or sub-hourly time resolution, is
soft-linked with an energy model. For example, the Irish TIMES model
consisting of 12 timeslices is soft-linked to a short-term operational
model with a temporal resolution of 30min [38]. However, soft-linking
two complex model is associated with increased computational cost and
feedback link issues where convergence cannot be assured [22].

In this study, a typical day for each month (12× 24) is chosen,
which divides the year into 288 timeslices. This makes the temporal
resolution of the model large compared to other long-term planning
models. Considering 24 h of a day helps in maintaining the required
temporal chronology. The seasonal intermittency of RESs is also en-
capsulated by taking every month of the year into account.

2.3. Unit commitment extension of TIMES

Long-term models often overestimate RES integration in the system
and underestimate the flexibility requirements [50]. Hence, it is im-
portant to include the short-term operational constraints in long-term
generation planning models to overcome this drawback [50,51]. IEA-
ETSAP developed a new extension (dispatching and unit commitment
feature) in TIMES energy model generator to improve dispatch of power
plants by considering unit commitment constraints. It directly imple-
ments operational characteristics of power plants into an energy system
modeling framework [52]. The five general short-term constraints
considered are start-up time, ramp rates, minimum load level, shut-
down time, minimum online and offline time.

This extension in TIMES provides the user the flexibility to imple-
ment any, among the three, unit commitment methods namely: basic,
advanced and discrete.

The basic unit commitment in TIMES uses linear programming to
implement UC in the model. Apart from the above five general UC
constraints, basic UC enables modeling of partial load efficiency losses
and limit on the number of start-up cycles. The basic UC consists of only
two distinct phases (dispatching phase and offline phase, i.e., the on-
line state is equal to the dispatching state). The accuracy in modeling
these constraints is low, and hence this feature has the least impact on
the model size [52].

The advanced unit commitment feature offers all the constraints
included in the basic UC along with differentiated start-up types (hot,

warm and cold), start-up times and cost differentiated by start-up types.
It considers the operation of the power plant in detail and consists of
four distinct phases (offline, start-up, dispatching and shut-down
phases). It may lead to overheads in model size and solution time [52].

Discrete unit commitment in TIMES includes all the constraints and
phases available in advanced UC and additionally offers the modeling
of new units. The entire new capacity can be divided into multiple
virtual units. UC is performed on these virtual units. The drawback is
that all individual units will have the same operational characteristic,
except the online/offline times that are modeled in a discretized way.
The discrete unit commitment increases the model size and solution
times significantly requiring enhanced computational power [52].

The dispatching and unit commitment extension of TIMES enables
the modeling of partial load efficiencies of thermal power plants. These
plants usually have higher efficiencies when operated closer to full
load. The partial load efficiency loss is modeled using two parameters:
Maximum load above which no efficiency loss occurs and below which
there is an increase in specific fuel consumption due to a loss in effi-
ciency [52].

The UC extension of TIMES is well suited to improve the dispatch of
power plants, such that it is closer to practical operations, and analyze
the flexibility of the system along with impacts of high renewable pe-
netration on system operation. Additional sets, parameters, variables,
and equations are introduced in TIMES to implement this feature along
with relevant changes to the model generator code by IEA-ETSAP [52].

As a case study, this dispatch and unit commitment extension of
TIMES is utilized to analyze the impact of adding short-term opera-
tional constraints to a long-term power system planning model. The
sensitivity analysis of the operational flexibility (minimum load level)
of the thermal generators is performed, along with analyzing the partial
load efficiency losses. The study is further extended for an energy
system with high RE penetration by adding a carbon tax to gain further
insights into the model behavior.

3. Model description

This section discusses the development of North Indian multi-re-
gional TIMES (NIMRT) model for the power sector of Northern Region,
which is the largest among the five regional grids of India. This region
has a heterogeneous blend of electricity sources such as coal, gas,

Fig. 1. Structure of TIMES model generator.
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lignite, hydro, solar and wind. With a massive renewable capacity, the
electricity mix is expected to undergo a drastic change in the future due
to the implementation of environmental policies. The study of this area
is also crucial because it faces regular load shedding, power quality
issues, theft and T&C losses, which may affect system operations.

NIMRT model consists of 9 regions including 7 states (Jammu &
Kashmir, Himachal Pradesh, Uttarakhand, Punjab, Haryana, Uttar
Pradesh and, Rajasthan) and 2 Union Territories (Chandigarh and
Delhi). The model is calibrated for actual plant capacity for base years
(2012–2017). It spans 28 years. The planning period is divided un-
equally as shown in Table 1. First few periods of short duration help to
calibrate existing power plant capacity whereas longer time spans in
later stages are sufficient with increasing data related uncertainties.
Mid-year discounting is considered so that the milestone year re-
presents the middle year of the period length.

3.1. RES representation

Long-term planning models do not address intra-regional RES
variability at a suitable spatial and temporal scale. Capturing this intra-
regional variability is important to quantify optimal capacity and
identify suitable investment locations. Region-specific capacity poten-
tial and annual capacity factors are the two key parameters that are
associated with RES description in TIMES. Usually a single aggregated
annual capacity factor of RES is used for a particular region, however, it
overlooks the intra-regional variation in RES.

The NIMRT model has a detailed RES representation which captures
their short-term intermittency to quantify flexible capacity requirement
and for other methodological enhancement reasons. Each region is di-
vided into 1° by 1° geographical grid cells, and these are further clas-
sified into ten equal range of solar and wind class based on the annual
capacity factor available in that grid cell. The available area and class of
technology in a grid cell for solar or wind installation is calculated using
a GIS tool (ArcGIS 10.5). Historical wind speed data is taken from
Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA V2), and processed in R to calculate the timeslice-
wise capacity factor for each grid cell. Fig. 2 shows the steps involved in
calculating the wind capacity factor for each grid cell. The mathema-
tical formulation is taken from Ref. [53] and the wind turbine data is
taken from Ref. [54]. Grid cell wise, hourly solar generation data is
taken from PVWAtts, an online tool developed by NREL. Similar steps
are followed to calculate the solar capacity factor. However, statistics
and sampling are not considered for solar radiation, and the mean is
calculated directly, subsequently calculating the timeslice-wise solar
capacity factor for each grid cell.

3.2. Data inputs and scenarios

The NIMRT model is data intensive and focused on the power
sector. Techno-economic parameters of the generating units, resource
supply and trading, unit commitment parameters, and demand pro-
jection are the major inputs for the model.

3.2.1. Techno-economic parameters of power plants
A detailed techno-economic description of power plant units (coal,

gas, lignite, nuclear, hydro) is specified. It includes existing, under
construction and permitted (proposed), and future power plants. The
details of existing power plants such as O&M cost, efficiency, annual
capacity factor are taken from IESS-2047 documentation. Under con-
struction and permitted plants are proposed with their expected year of
commissioning. Future technologies are specified to meet the future
demand as existing plants will retire on completion of technical life.
Parameters of coal power plants vary according to the size of the unit.
Units of capacity up to 210MW are small, 210–500MW are medium
and greater than 500 are large. Average size of small hydro unit is
20MW and that of large hydro unit is greater than 100MW.

Various techno-economic parameters for new technologies are
taken from CERC tariff reports and other international reports. Future
power plants that are proposed in the model will be technologically
advanced with greater efficiency. New coal power plant technologies
include: sub-critical (η=32.7%), supercritical (η=40%), ultra-super-
critical (η=46%) and internal combustion combined cycle (η=49%).
New gas power plants, hydropower plants (large and small), new class
wise solar and wind technologies, and various storage technologies are
specified such as pumped hydro storage (PHS), Lithium-ION battery (Li-
ION), Flow battery, Sodium Sulphur (NaS) and Lead (Pb) acid battery.
The investment costs, efficiency, annual availability factor and fixed O&
M costs for the technologies are specified (Table 2).

3.2.2. Resource supply and trading
The northern region of India imports coal, gas, diesel and nuclear

fuel from domestic (other states of India) and foreign sources. The
domestic coal import is modeled by accounting for the transportation
costs involved. Bi-directional inter-regional trading process is defined in
the model based on the existing high voltage transmission lines between
the regions as shown in Fig. 3. However, the trading links do not si-
mulate real transmission line operation and crudely represent physical
phenomena to enable energy exchange between the regions. It is as-
sumed that regions which are presently not connected via high voltage
transmission lines will have no connection in the future as well. How-
ever, an increase of capacity of existing lines is possible.

3.2.3. Unit commitment parameters
Activation of this extension requires specification of some TIMES

attributes associated with UC. For this study, we used the discrete unit
commitment feature and enabled it by specifying the NCAP_SEMI at-
tribute in addition to other UC parameters. Table 3 summarizes all the
attributes used in this study and the values associated with them. The
attribute NCAP_SEMI enables the model to divide the whole new plant
capacity internally into many virtual units having the capacity specified
by this attribute. The operational constraints of all the virtual units will
be the same. The transition time of power plants to the next standby
condition (hot to warm, warm to cold) is defined by maximum non-
operational time. There are no operational constraints specified for
biomass power plants as the generation output level depends highly on
fuel availability and quality.

3.2.4. Demand projection and load curve
Electricity demand projection for the years 2016–17 to 2026–27,

and 2031–32 and 2036–37 for all the states of India are available in the
Electric Power Survey Report by Central Electricity Authority (CEA)
India [55]. As the study horizon extends beyond 2037, the future en-
ergy demand is projected using multiple linear regression method in R,
using GDP and population as exploratory variables shown in Fig. 4. The
training data for the regression model is constructed using population
estimates and projections from World Bank (1990–2017), GDP (2010
USD PPP) from OECD GDP long term forecast from (1990–2017), and
per capita power consumption time series from World Bank
(1990–2014) [56–58].

Table 1
Time periods and milestone years of the model.

Start End Milestone Year Period Length

2012 2012 2012 1
2013 2013 2013 1
2014 2015 2014 2
2016 2018 2017 3
2019 2022 2020 4
2023 2027 2025 5
2028 2032 2030 5
2033 2037 2035 5
2038 2042 2040 5
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In TIMES modeling framework, the load curve is specified as frac-
tions of demand for each timeslice. Due to unavailability of region-
specific data, we consider the national load curve pattern for the years
2010 and 2011 for all the regions as shown in Fig. 5.

3.2.5. Scenarios
The model is analyzed for two scenarios: Reference and high RE.

Reference scenario presents the model behavior in business as usual
case. While high RE scenario refers to the model behavior with high
RES penetration, which is obtained by adding a carbon tax to the
system. These scenarios further consist of several cases, and each case is
given a unique name to differentiate and appreciate the results. In the
reference scenario, the base case is obtained by simulating the model
for business as usual case without any operational constraints or en-
vironmental factor. The UC case is obtained by adding the constraints
described in Table 3, to the base case. The sensitivity of the model
concerning minimum load level is analyzed and the load levels con-
sidered are described in Table 4. The partial load efficiencies are
modeled, and the data is shown in Table 5. The case is named UC-PLE.

In the high RE scenario, the case names have been updated with
suffix ct hence base case is now base-ct, UC case is UC-ct. The overhead
model size increased significantly after integrating the unit commit-
ment constraints. A 32 GB ram and 16-core system was used for simu-
lations. The total simulation time was above 24 h for some model cases.

3.3. Other settings

The energy flow within the model is tracked in Peta Joules (PJ), and
all the power plant capacities are monitored in Gigawatt (GW). The
system discount rate is set to 6% and the discounting year is 2017. The
currency unit in the model is million Indian rupees (MINR). Assumed
aggregate technical and commercial losses are 15% in 2012 and ex-
pected to decrease to 5% in 2040 gradually. The model calculates the
emissions generated from the burning of fossil fuels to produce elec-
tricity. The carbon dioxide (CO2), methane (CH4) and nitrous oxide
(N2O) emissions tracked are in kilotonne (kt).

4. Results & discussions

The results are presented for two scenarios namely, reference and
high RE as mentioned previously. The reference scenario is a compar-
ison of the base-case and UC-case with no environmental factor. The
results are grouped in themes to analyze the sensitivity of the model to
parameter variations. The themes considered are power generation &
dispatch of technologies, technology capacity mix, RE curtailment &

Fig. 2. Steps for calculating wind capacity factor.

Table 2
Parameter description of technologies.

Technology No. of
Units in
Base years

Investment Cost for new technology
(MINR/GW)

Fixed O&M Cost
(MINR/GW/year)

Unit Type 2017 2037 2017 2037

Coal Small- 55 Subcritical 49700 59700 1490 1790
Medium-
56

Supercritical 54900 65900 1650 1980

Large- 43 Ultra-
Supercritical

63500 76100 1900 2280

Gas 46 37800 45500 1510 1820
Hydro Small- 268 Small 95000 94260 3100 3100

Large- 103 Large 135300 108070 4440 3760
Nuclear 16 81410 75210 2000 1880
Storage PHS- 4 Li-Ion 168750 67500 3300 1300

Flow 168750 70000 3300 1400
NaS 255000 54000 5100 1000
PHS 82500 82500 1650 1650
Pb Acid 82500 25000 1650 500

Solar NAa 53000 24000 700 700
Wind NAb 62000 49000 1100 1100

a Solar capacity in 2017 in all regions is 2.35 GW.
b Wind capacity is in 2017 in all regions 1.31 GW.

Fig. 3. Interregional trading links.
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role of storage technologies, and interregional energy exchange. The
regional variations in the above themes are also presented. Some of
these themes are further subdivided into two categories: impact of
minimum load level and impact of partial load efficiency loss.

The high RE scenario is a comparison of base-case and UC-case
when a carbon tax is added to the system. To avoid repetition in results,
only the themes that represent significant impact are shown in high RE

scenario. The high RE system is analyzed for different minimum load
levels as in Table 4 to assess the impact of operational flexibility of
thermal power plants. In this scenario, themes considered are power
generation and dispatch of technologies and technology capacity mix.

4.1. Reference scenario

The base-case is obtained by considering the supply and demand
data, techno-economic parameters of power plants, new technologies,
timeslice-wise availability factor of renewables and their region-wise
potential along with spatial, temporal and other settings. UC-case is
obtained by incorporating the unit commitment constraints in the base-
case.

4.1.1. Power generation and dispatch of technologies
The temporal and spatial resolution of the model permits a detailed

analysis of power generated and timeslice-wise dispatch of technolo-
gies. Fig. 6 compares the generation mix in the base-case and UC-case.
In base-case, coal-based generation dominates with continuous con-
tribution of more than 50% in the generation mix till 2035. Its con-
tribution decreases to 46.6% in 2040 due to a steady increase in solar-
based generation. Solar penetration is higher (25.2%) than wind (7.8%)
in 2040 attributable to the greater cost reduction potential of solar
power plants. The total RES penetration increases from 5% in 2017 to
33% in 2040.

Incorporation of operational constraints (Table 3) led to significant
changes in the generation mix and dispatch of technologies when
compared to the base-case. The share of coal-based generation in this
case is 54% (7.4% higher than base-case) while that of solar is 24%
(1.2% lower than base-case). The discharge of storage is higher in the
UC-case while the wind and gas-based generations decrease in this case
compared to the base-case. The cause behind change in generation mix
is the thermal and mechanical constraints imposed on the power plants.
In UC-case, constraints on coal power plants are stringent compared to
other technologies. These constraints restrict frequent cycling (on-off
and up-down ramping) of coal power plants and force them to operate
at the prescribed minimum load level. Thereby, the share of coal plants
increases while RES penetration decreases in UC-case. Solar and wind-
based RES generation is intermittent and requires greater operational
flexibility. Storage works as a flexible resource to accommodate these
RESs without affecting operational stability and security. Thus, in-
creasing the share of storage in UC-case compared to base-case.

The power dispatch of technologies in base-case and UC-case is
shown in Fig. 7. Dispatch of coal and solar generators are com-
plementary to each other in both cases. Hydro and wind generators
provide the necessary balance to the system. Coal units maintain a
minimum load level, and therefore solar penetration is lower in UC-
case. The share of hydropower plants is higher in this case because they
are flexible and hence play a vital role in the generation mix when the
operational constraints are added in the model.

Fig. 8 compares the generation output of single units of different
technologies for a single day (24 timeslices). The incorporation of UC

Table 3
Unit commitment parameters.

Constraints TIMES Attribute Unit Typical Values

Coal Gas Hydro Nuclear

Ramp Rates ACT_UPS % of online capacity 40% 100% 100% 30%
Start-up Time ACT_SDTIME Hours 8–12 1–4 15min 24
Min. Load level ACT_MINLD % of installed capacity 55% 50% 20% 50%
Min. up & downtime ACT_TIME Hours 8–12 6 None 24
Start-up Cost ACT_CSTSD Currency units per unit of started-up capacity (MINR/GW) 3000 5000 2000 11,000
Min. level of semi-continuous unit size NCAP_SEMI Capacity unit (GW) 0.6 0.1 0.075 0.2
Maximum non-operational time ACT_MAXNON Hours 12 4 15min 24

Fig. 4. North India state-wise demand projection.

Fig. 5. Timeslice-wise demand fraction.

Table 4
Minimum load level considered in model cases.

Technology UC-Case UC-Case 1 UC-Case 2

Coal 55% 30% 70%
Gas 50% 20% 55%
Lignite 55% 35% 70%

Table 5
Partial load efficiency loss data.

Technology Max. load Increase in fuel (Hot state)

Coal & lignite 70% 1.3 times
Gas & diesel 60% 1.2 times
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constraints changes the dispatch of conventional generators. Their ad-
dition to the model prevents coal and gas units from excessive cycling
and extreme ramping and forces the units to maintain a minimum load
level. Hydropower plants are considered highly flexible such that their
output can be fluctuated to meet the demand and maintain balance as
depicted in Fig. 8, however, the minimum load level was maintained
during the process. The absence of unit commitment constraints led to
excessive cycling of biomass power plants.

Fig. 9 depicts the region-wise variation in technology generation. In
all regions except RJ (where necessary balancing is provided by sto-
rage), the share of solar is reduced and coal is increased. This increases
the electricity production of the PB, RJ and UU where coal plants are in
high capacity.

4.1.1.1. Impact of minimum load level. The impact of varying minimum
load level (Table 4) of generating units on the generation mix is
depicted in Fig. 10. Reducing the minimum load level increases the
operational flexibility of the system. Coal-based generation reduces in
UC-Case 1 while it is almost constant in UC-Case 2 compared to UC-
case. The lower level of minimum load level requirement (UC-Case 1)
allows the generating units to produce lesser amount of electricity

whereas, higher minimum load level (UC-Case 2) forces the units to
operate at higher levels, thereby increasing the coal-based generation.
Solar generation increases in UC-aCse 1 as the system is flexible (low
minimum load-level) and reduces in UC-Case 2 due to lower flexibility
(high minimum load-level) compared to UC-case. However, when
compared to UC-case, the coal-based generation is slightly less in UC-
Case 2 because some old generating units shut down instead of
operating at a higher load level. This decrease in coal-based
generation led to an increase in wind penetration. Hydro penetration
increases in UC-Case 2 since they are highly flexible and their
requirement is higher when system flexibility is lower, whereas, it
decreases in UC-Case 1.

Fig. 11 depicts the dispatch of generators in UC-Case 1 and UC-Case
2. It is observed that coal power plants cycle more in UC-Case 1 and less
in UC-Case 2 allows when compared to UC-case (Fig. 7). Varying the
minimum load level changes the dispatch and cycling of the conven-
tional generators significantly. Hence, the minimum load level is an
indicator of system flexibility.

Fig. 12 compares the generation output of different technologies for
a single day (24 timeslices) in the three cases. Higher minimum load-
level (UC-Case 2) prevents cycling (constant output) of coal and gas

Fig. 6. Comparison of fuel penetration and annual generation mix.

Fig. 7. Annual dispatch pattern comparison for 2040.
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plants, whereas, when it is decreased (UC-Case 1), the plants can cycle
more. The behavior of hydropower plants remains the same (flexible)
and generation output of solar increases in UC-Case 1 and decreases in
UC-Case 2 as discussed earlier.

The variation in regional generation mix is depicted in Fig. 13. Coal-
based generation is higher in UC-Case 2 in UU region while hydro-based
generation is higher in UT region. UC-Case 2 is a system with less
flexible power plants, hence hydro penetration is greater to increase
flexibility to accommodate renewables. Solar-based generation is
higher in UC-Case 1 in UU and HR regions since these areas have
flexible coal power plants.

4.1.1.2. Impact of partial load efficiency loss. The partial load efficiency
losses feature of TIMES is utilized to portray a realistic operation of
thermal power plants. This led to noticeable changes in the generation
mix as shown in Fig. 14. This reduces coal-based generation by 16 TWh,
while increases hydro generation by 17 TWh compared to UC-case. Coal
units operating at lower load levels are shut down to prevent additional
costs associated with loss in efficiency. In UC-PLE, penetration of hydro,
wind and storage technologies increases to meet the demand, which
was earlier fulfilled by coal. Solar technology is cheaper than wind in
our study, however, the model prefers wind due to unavailability of
appropriate solar technology in the timeslice when coal output
decreases, which can be seen in Fig. 15, and hence solar generation

decreases.

4.1.2. Technology capacity mix
A major outcome of a power system planning study is the new ca-

pacity and storage requirements of the energy system. Fig. 16 outlines
the year wise required capacity of generating technologies along with
regional distribution in 2040 for base-case and UC-case. In both cases,
there is a steady increase in coal and solar capacity. Lower flexibility of
coal power plants in UC-case reduces the share of RES; solar capacity
reduces from 302 GW in base-case to 203 GW in 2040. Also, wind ca-
pacity in the UC-case (43 GW) is lower by 5 GW compared to the base-

Fig. 8. Output comparison of a single unit of technologies.

Fig. 9. Region-wise variation of technology generation.

Fig. 10. Technology-wise generation output comparison for 2040.
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case (48 GW). To provide the necessary flexibility, capacity of battery
storage (NaS) rises from 14 GW in base-case to 22 GW in UC-case and
new pumped hydro storage of 1 GW capacity is added in UC-case only.

To increase system flexibility in UC-case, 17 GW hydro capacity is
added in UC-case compared to only 11 GW in base-case. In the base
case, 1 GW of new supercritical coal power plant and 99 GW of ultra-
supercritical coal power plant is added in the system in 2040 making
the total capacity 143 GW. While in UC-case, 106 GW of ultra-super-
critical coal power plant is added in the system, increasing the capacity
of new coal plants by 6 GW and making a total capacity of 149 GW.
Reduction in solar capacity is significant compared to increment in coal
power plants due to better CUF of coal power plants in UC-case. Change
in capacity mix reflects the operational needs of the future power
system with high renewable generation.

The regional capacity distribution differs significantly in the two
cases. Solar capacity reduces in all regions except for RJ because the gas
capacity in this region reduces in the UC-case. Storage capacity is
higher in RJ and DL in the UC-case. The overall system capacity is lower
by almost 100 GW in the UC-case as compared to base-case, but still, the
supply-demand balance is maintained as the existing capacities operate
at higher load levels and are adequate to balance the system.

The performance of renewable power plants is usually denominated
by a metric called capacity utilization factor (CUF). It is defined as the
ratio of actual power produced to the maximum generation possible.
The annual CUF is outlined in Table 6. The CUF of most technologies
increases with the application of unit commitment constraints that re-
strict the repetitive cycling of conventional generating units and force
them to operate at a defined minimum load level. Incorporation of
operational constraints led to better utilization of technologies and
avoid excessive capacity addition.

4.1.2.1. Impact of minimum load level. Changing the minimum load
level of technologies affects technology capacity. Fig. 17a depicts the
capacity comparison for UC-case, UC-Case 1 and UC-Case 2. Coal
capacity is higher in UC-Case 1 (153 GW) and is lower in UC-Case 2
(141 GW) as compared to UC-Case (149 GW). When coal power plant
units operate at lower load levels (UC-Case 1), they produce less
electricity and hence require greater generating capacity. Whereas,
when the minimum load level is increased (UC-Case 2) the generating
units are forced to generate more electricity thereby reducing the
capacity requirement.

Solar penetration is higher when system flexibility is higher (UC-

Fig. 11. Dispatch pattern comparison for 2040.

Fig. 12. Output comparison of technologies.
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Case 1). Hydro capacity increases when constraints on conventional
generators are made stringent (UC-Case 2) due to their flexible nature.
The capacity of storage decreases in both cases when compared to UC-
case. In UC-Case 1, the conventional generators are flexible, and hence
the role of storage is limited while, in UC-Case 2, storage capacity de-
creases due to a reduction in solar capacity. Wind capacity increases in
both cases to maintain supply-demand balance.

4.1.2.2. Impact of partial load efficiency loss. Addition of partial load
efficiency led to changes in the capacity mix as shown in Fig. 17b. The
capacity of coal decreases by 3 GW since the generating units operate at

a higher load level to avoid partial load efficiency losses. Large hydro
and wind capacity increases by 5 GW and 8 GW respectively as their
contribution to generation mix increases. Solar capacity decreases by
11 GW due to operation of thermal plants at higher load levels. The
capacity of storage decreases by 2 GW considering decrement in solar
penetration.

4.1.3. RE curtailment and role of storage
Renewable curtailment is the main issue that reduces the economic

feasibility of RE power plants. Fig. 18 shows the solar and wind cur-
tailment in base-case and UC-case. RE curtailment is higher in UC-case
compared to base-case despite higher storage capacity in the former
case. Conventional generators are not allowed to adjust their load level
as per the RES generation due to restrictions on frequent cycling and
extreme ramping in the UC-case. The model curtails extra electricity
generated by the RES that remains after full charging of the storage
technologies. It is also observed that wind curtailment reduces abruptly
between 2035 and 2040. The increment of demand between 2035 and
2040 is high whereas the increase in capacity of conventional gen-
erators is not at the same proportion. Therefore wind curtailment re-
duces to fulfil the demand.

Region wise solar curtailment is shown in Fig. 19. In the base-case,
there is high solar curtailment in RJ while, it is absent in the UC-case
due to high storage capacity in RJ. Curtailment in HR, PB and UU is

Fig. 13. Region-wise generation in 2040.

Fig. 14. Technology-wise generation output comparison for 2040.

Fig. 15. Output comparison of technologies.
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Fig. 16. Annual and regional capacity mix in 2040 in base-case and UC-case.

Table 6
Capacity utilization factor comparison for 2040 (in %).

Technology Base-Case UC-Case

Biomass 0 0
Coal 44.38 49.65
Gas 0.23 0.6
Hydro (L) 34.72 36.21
Hydro (s) 44.88 44.88
Lignite 42.42 47.39
Nuclear 70.08 70.08
Solar 11.07 11.21
Storage 6.1 7.5
Wind 21.82 24.24

Fig. 17. Technology-wise capacity comparison for 2040.

Fig. 17. (continued)

Fig. 18. Annual solar and wind curtailment comparison.

Fig. 19. Region-wise solar curtailment in 2040.

Fig. 20. Storage charging/discharging process in 2040.
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higher in the UC-case due to the absence of storage technologies and
high coal capacities in these regions.

Fig. 20 shows the charging and discharging process of the storage
technologies in UC-case in comparison with solar generation. Charge
and discharge cycle of storage technologies is highly concurrent with
solar generation in the model. Charging process takes place in the same
timeslices as that of solar generation while discharging takes place in its
absence. This behavior of storage facilitates the smooth integration of
solar and helps to maintain supply-demand balance.

4.1.3.1. Impact of minimum load level. The minimum load level affects
the operating levels of conventional generators. Varying this parameter
changes the RE penetration in the system which subsequently affects
the RE curtailment as well. Solar curtailment is higher in UC-Case 1 and
UC-Case 2 compared to UC-case as seen in Fig. 21 due to lower storage
capacity in both cases. However, curtailment in UC-Case 1 is lower than
UC-Case 2, since the former represents a system with high flexibility.
On the other side, wind curtailment is lower when system flexibility is
lower. It can be inferred that wind plays a role in maintaining the
demand-supply balance in the system.

4.1.4. Interregional energy exchange
This section discusses the import and export of electricity between

the regions. Net import-export of electricity in all regions is shown in
Fig. 22. There is no change in net electricity imported in regions having
a less generating capacity such as CH and DL. Exports of HP and HR
decrease due to decreased solar-based generation in the absence of
required storage flexibility (Fig. 9). With a high capacity of coal in UU
and hydro in UT, these regions produce more electricity in UC-case

while production in RJ is high since it is a coal-rich region and has
storage support to integrate high solar penetration. DL has direct in-
terregional trade link only with HR, UU, RJ as shown in Fig. 3. With
high solar-based generation, HR exports mostly to DL in base-case.
However, in UC-case, DL imports major from RJ and UU as depicted in
Fig. 23. With UC constraints, due to a reduction in solar penetration,
import of DL shifts from solar-based generation to coal-based genera-
tion.

4.2. High RE scenario

Policymakers are always observant about the effects of climate
change and its impact on long-term planning decisions [59]. Hence, we
introduce a carbon tax in the model to study the evolution of the energy
system under climate change constraints in the same framework. In-
troducing a carbon tax ensures high RE penetration in the system to
produce emission-free electricity. This helps to assess the model beha-
vior with UC constraints and large share of RESs. Fig. 24 shows the
carbon tax in MINR/kilotonne [60]. The base-ct case consists of all the
data considered in base-case along with a carbon tax. UC-ct is obtained
by adding a carbon tax to UC-case.

4.2.1. Power generation and dispatch of technologies
Fig. 25 shows the fuel mix and generation mix in base-ct and UC-ct.

The share of renewables is significant in both cases. The share of coal in
the generation mix is 30% in the base-ct case while it is 26% in UC-ct in
2040. The coal-based generation is lower in UC-ct because the opera-
tional constraints force the coal units to produce some fixed amount of
electricity and carbon emissions. Some coal units are shut down to
obtain a least-cost energy system and avoid carbon tax. Gas based
generation increases by 1.12 TWh in UC-ct since the carbon emissions
of these plants are lower compared to coal power plants. Hydro based
generation remains constant in both cases.

Wind penetration is higher in UC-ct to compensate for the decrease
in coal generation as shown in Fig. 26. It can be seen that the timeslices
during which coal generation decreases, wind generation increases,
thereby maintaining the supply-demand balance in the system. Solar
generation is 337.5 TWh in UC-ct and 427.7 TWh in base-ct and activity

Fig. 21. Solar and wind curtailment comparison.

Fig. 21. (continued)

Fig. 22. Net trade of electricity in each region for 2040.

Fig. 23. Import of DL from other regions in 2040.

Fig. 24. Carbon tax variation over the years.
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of storage is 72.6 TWh in UC-ct and 40 TWh in base-ct. When solar
availability is high, the additional electricity generated by solar is used
to charge the storage technologies and is not reflected directly in the
generation mix. Hence activity of storage is higher in UC-ct.

4.2.1.1. Impact of minimum load level. The impact of changing the
minimum load levels (Table 4) on the generation mix in a high
renewable scenario is presented in Table 7. Decreasing the minimum
load level (UC-ct-Case 1) increases the contribution of coal in the
generation mix. Coal units can now operate at lower load levels and the
system flexibility is greater which enables higher renewable
penetration. Increasing the load level (UC-ct-Case 2) decreases the
share of coal power plants because now the units are forced to produce
more electricity thereby increasing the carbon cost and hence, some

more coal units are shut down as compared to UC-ct. Solar penetration
increases in the generation mix when the minimum load level is
decreased due to increased flexibility. The activity of wind and
storage decreases in this case. When the minimum load level is high,
wind penetration increases to compensate for the decrease in coal-
based generation and activity of storage increases to provide flexibility
to the system.

4.2.2. Technology capacity mix
The addition of carbon tax changed the capacity significantly.

Fig. 27 shows the comparison of capacity of each technology in 2040.
Coal capacity reduces in UC-ct as compared to base-ct to avoid carbon
tax, and the capacity utilization factor of existing capacity is higher.
Solar capacity decreases, whereas, storage and wind capacity increases.
Wind and storage capacity is higher in UC-ct to compensate for the

Fig. 25. Annual generation mix in base-ct and UC-ct cases.

Fig. 26. Coal and wind generation pattern in 2040.

Table 7
Technology wise generation comparison in 2040.

Technology UC-ct UC-ct-Case 1 UC-ct-Case 2

Coal 374.64 431.94 365.24
Gas 1.16 0.76 1.25
Hydro (L) 231.81 231.81 231.81
Hydro (s) 31.67 31.67 31.67
Lignite 6.8 6.92 7.05
Nuclear 49.10 49.10 49.10
Solar 337.50 351.90 335.70
Storage 72.61 56.29 77.21
Wind 340.58 260.01 354.22

Fig. 27. Comparison of Technology capacity in 2040.

Table 8
Capacity of technology in 2040 (GW).

Technology UC-ct UC-ct-Case 1 UC-ct-Case 2

Coal 81 98 78
Gas 1 1 1
Hydro (L) 54 54 54
Hydro (s) 7 7 7
Lignite 2 2 2
Nuclear 7 7 7
Solar 329 324 328
Storage 70 57 74
Wind 267 184 272
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decrease in coal (also evident in generation mix).

4.2.2.1. Impact of minimum load level. Capacity mix when the minimum
load level is changed is shown in Table 8. It follows a similar trend as
the generation mix discussed previously. Imposing a carbon tax on less
flexible thermal plants reduces their capacity and brings in more
storage capacity to support the integration of renewables. However,
share of solar in the generation mix is lower in UC-ct-Case 2 compared
to other UC-ct-Case 1, but the capacity of solar is higher in UC-ct-Case
2. To produce emission-free electricity in a system with stringent
operational constraint, solar charges the storage and hence its
generation is not directly reflected in the generation mix in Uc-ct-
Case 2.

5. Conclusion

This study analyzes the impact of short-term operational constraints
on long-term system planning by incorporating technical constraints of
power plants in the same planning modeling framework. Previous
studies adopted soft-linking approach of two different modeling fra-
meworks to couple short-term operations and long-term planning. In
this study, the unit commitment constraints are incorporated directly in
TIMES model of long-term planning using its in-built UC extension. This
methodology not only ensures the convergence of the model to obtain a
feasible solution but also reduces the effort involved in building and
handling separate models for short-term and long-term power system
studies.

The power system model of the Northern regional grid of the Indian
power sector is developed in TIMES with a detailed spatial and tem-
poral representation of solar and wind energy. A detailed description of
the existing generating units & availability of future technologies, their
techno-economic parameters, load profile and demand projections are
the inputs to the model.

Results show that long-term models underestimate the CUF of
thermal generating units but in practice, they have high CUF.
Incorporation of unit-commitment constraints in planning model pre-
vents excessive cycling and extreme ramping of the baseload power
plants and changes their dispatch profile. Hence, it leads to better uti-
lization of existing capacities and reduces the requirement of new
generation capacity (evident from CUF of technologies). Therefore,
overestimation of generation capacity and associated investment can be
avoided by incorporating the short-term operational constraints in
long-term system planning.

With stringent UC constraints on the conventional generators, they
operate at fixed load levels and cannot frequently cycle to accom-
modate the varying RESs. Hence, the system cannot accept all the re-
newable energy and this leads to higher wind and solar curtailment in
UC-case compared to base-case. Role of storage increases in UC-case to
provide the necessary supply and demand balance. This implies that
adding UC constraints prevents the model from overestimating RES
penetration and enables better quantification of the flexible resources
required.

Further, sensitivity analysis on operational constraints by changing
the minimum load level of conventional generators show significant
changes in the generation and capacity mix of technologies. When
conventional generators are flexible, they allow higher RES penetration
and require less storage. Conversely, when the flexibility is low, RES
penetration is low, and the storage requirement is elevated. The in-
flexible coal plants decrease the solar penetration in the system re-
sulting in higher curtailment. If the flexibility requirement is not ade-
quately quantified at the planning stage it could result in high RES
curtailment during actual system operations, which in turn would cause
financial loss for RES stakeholders.

The methodology used in this study can be utilized to assess flex-
ibility requirements in the system under various scenarios. High RE
penetration scenario is developed by adding a carbon tax to the system.

With the carbon tax constraint, the model prefers to shut down some
coal units to obtain a least-cost energy system and increases the share of
RES.

However, with unit commitment constraints, the capacity share of
coal units decreases further with increased CUF of operating units.
Technical constraints force the units to operate at a defined load level
and for a minimum time. While the activity of flexible gas power plants
and storage increases. It is clear from the results that a high RES based
power system would require additional flexibility resources and ob-
ligates the conventional generators to be highly flexible for prolonged
use.

UC extension of TIMES also permits to portray realistic operating
characteristics of the thermal units by incorporating attribute for partial
load efficiency. Addition of partial load efficiency loss reduces the coal-
based generation, as the unit operating at lower load levels are shut
down to avoid further fuel costs associated with a loss in efficiency.
Hydro and wind-based generation increases to maintain demand-supply
balance. Solar curtailment decreases and the activity of storage in-
creases.

The empirical results reported herein should be considered in light
of some limitations. The electricity demand is not modeled in detail due
to the unavailability of data. Electricity demand components such as
electric transport (electric vehicles) may undergo profound transfor-
mations in the long run, and the results of planning study may vary. The
accuracy of the model outcome is subject to the quality of data used
during model development. Limitations in the accessibility of Indian
power sector data for the model may have been directly reflected in the
results.

Nevertheless, it can be concluded that the integration of short-term
operational constraints in the long-term modeling framework can affect
the generation and capacity mix significantly. Hence, consideration of
these constraints is highly essential to portray a realistic picture of fu-
ture energy scenario. Further, incorporation of these constraints in the
same planning framework ensures convergence and optimality, and
reduces the computational efforts involved.
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