Mobile monitoring provides robust measurements of air pollution. However, resource constraints often limit the number of measurements so that assessments cannot be obtained in all locations of interest. In response, surrogate measurement methodologies, such as videos and images, have been suggested. Previous studies of air pollution and images have used static images (e.g., satellite images or Google Street View images). The current study was designed to develop deep learning methodologies to infer on-road pollutant concentrations from videos acquired with dashboard cameras.
Types
              Journal Articles
          Caption
              Urban air-quality estimation using visual cues and a deep convolutional neural network in Bengaluru (Bangalore), India
          Upload Documentations
          
      Choose Verticals
          
      From Date
              status
              Live
          Image
           
Published by
              Environmental Science & Technology
          Description (Below Key Messages)
              Alon Feldman, Shai Kendler, Julian Marshall, Meenakshi Kushwaha, Adithi R Upadhya, and Barak Fishbain are the co-authors.
Read the full article here
Publication Detail Header Image
              