

Addendum 2

Urban Greenprints Developing a Nature-based Solutions Feasibility Framework for Indian Cities

Edited and Designed by CSTEP

Disclaimer

Every effort has been made to ensure the correctness of data and information used in this document. However, the authors or CSTEP does not accept any legal liability for the accuracy or inferences of the material contained in this document and for any consequences arising from the use of this material.

©2025 CSTEP

Editor: Shayantani

Tel.: +91 (80) 6690 2500

Email: <u>cpe@cstep.in</u>

Designer: Bhawna Welturkar

Bengaluru	Noida
No. 18. 10th Cross. Mavura Street	1st Floor. Tower-A
Papanna Layout, Nagashettyhalli	Ś Smartworks Corporate Park
RMV Stage 2, Bengaluru 560094	Sector 125, Noida 201303
Karnataka (India)	Uttar Pradesh (India)

Contents

1.	Identifying Suitable NbS	. 1
2.	Justification for Scoring	.2
3.	Context Assessments: Chennai	15
4.	Context Assessments: Mangaluru	61

1. Identifying Suitable NbS

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Mangroves	30+ species/hectare; 5 tons CO ₂ /hectare/year; 95% stormwater absorption	High: 25 hectares upwards	High: 66% wave energy reduction; long-term resilience
Living Shorelines	10–15 species/hectare; 1–2 tons CO ₂ /hectare/year; moderate erosion control	Medium: 5–10 hectares	High: 30%–50% wave energy reduction; strong erosion control
Beach Nourishment	Limited biodiversity; recreational value; 10–30 m ³ sand deposition/linear meter	High: 10–30 hectares/km	Medium: 30%–50% erosion reduction; lacks long-term resilience
Dune Restoration	10 species/hectare; 0.2–0.5 tons CO ₂ /hectare/year; 20%–40% sediment stabilization	High: 30–100 hectares/km	High: 50% wave energy reduction; 30%–60% flood buffering
Salt Marshes	20–40 species/hectare; 4–8 tons CO ₂ /hectare/year; 30%–50% pollutant filtration	High: 50–150 hectares/km	Medium: 30%–50% wave energy reduction; 500–1,000 m ³ floodwater storage
Re-activating Floodplain	10–20 species/hectare; 1,500–3,000 m ³ floodwater retention/hectare; 1–2 tons CO ₂ /year	High: 200–500 hectares/km	High: 30%–70% flood peak reduction; sediment trapping
Urban Forest, Forest Corridors	15–30 species/hectare; 1–3 tons CO ₂ /hectare/year; 1–2°C cooling	Low: 0.1–1 hectare/block	Medium: localised cooling; 30%–50% stormwater absorption
Green Roofs	5–10 species/rooftop; 0.2–0.5 tons CO ₂ /hectare/year; 2–4°C cooling	Low: rooftop-based	Medium: 50%–80% rainfall retention; localised flood reduction
Bioretention Areas	15–20 species/hectare; 80–95% pollutant filtration; 0.5–1 tons CO_2 /hectare/year	Medium: 100–200 m ²	High: 60%–80% stormwater retention; 30%– 50% peak flow reduction
Permeable Pavements	30%–50% runoff reduction; 10–20 litres infiltration/m²; limited biodiversity	Low: replaces existing pavements	Low: 20%–40% rainfall retention; limited localised impact
Inland Wetlands	Medium: 20–30 species/hectare; 500–1,000 m ³ water retention/hectare; 2–4 tons CO ₂ /year	Medium: 50–100 hectares	Low: 30%–50% sediment filtration; inland flood management
Naturalised Riverbanks	20–40 species/km; 50%–70% erosion reduction; 2–5 tons CO ₂ /km/year	Medium: 5–15 hectares/km	Medium: 20%–40% flood peak reduction; localised riverine impact
Artificial Reefs	10–20 species/reef; 50%–200% fish biomass increase; 0.5–1 ton CO ₂ /year	Low: no additional land required	Medium: 10%–20% wave energy reduction; buffer for mild surges

2. Justification for Scoring

2.1. Mangroves

Image	Component	Qualification	Scoring
	Ecosystem Service Benefits	 Biodiversity: India's mangroves support 46 crab species, around 60 commercially important fish species, and numerous bird species, significantly enriching biodiversity.¹ Carbon Sequestration: Mangroves sequester 6–8 tons of CO₂ per hectare annually, outperforming mature tropical forests in carbon storage efficiency.² Wave Reduction: Mangroves reduce wave heights by 13%–66% over 100 m, with the highest reduction near their edges.³ Storm Protection: Mangroves diminish storm surge height and water flow velocity, providing robust protection against cyclonic storms.⁴ 	3 (High)
	Land Requirement	The smallest recorded mangrove ecosystem is 25 hectares. ⁵	1 (High)
Source: https://upload.wikimedia.org/wikipedia/comm ons/7/7b/Mangroves_at_sunset.jpg	Effectiveness for Urban Coastal Adaptation	 Coastal Shield: Mangrove roots dissipate wave energy, safeguarding infrastructure and communities and enhancing coastal resilience and climate mitigation through carbon storage.⁶ Resilience and Adaptation: Mangroves shield against tidal waves and storms, trap carbon-rich particles, foster sediment accretion, mitigate saline intrusion, and support aquatic habitats, crucial for urban coastal adaptation.⁶ 	3 (High)

¹ S., Murugan., D., Usha, Anandhi. (2016). An Overview of Crustacean Diversity in Mangrove Ecosystem. 81-99. doi: 10.1007/978-981-10-1518-2_5

² Harishma, K.M., Sandeep, S. & Sreekumar, V.B. Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecol Process 9, 31 (2020). https://doi.org/10.1186/s13717-020-00227-8

³ ELAW: Environmental Law Alliance Worldwide. (2024, July 10). Reduction of wind and swell waves by mangroves - ELAW: Environmental Law Alliance Worldwide. https://elaw.org/resource/reduction-of-wind-and-swell-waves-by-mangroves

⁴ Susmita, Dasgupta., Md., Saiful, Islam., Mainul, Huq., Zahirul, Huque, Khan., Md., Raqubul, Hasib. (2019). Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh. PLOS ONE, 14(3):0214079-. doi: 10.1371/JOURNAL.PONE.0214079

⁵ YKAN. (2023). Preserving a Little Paradise on the Coast of Jakarta. Yayasan Konservasi Alam Nusantara. <u>https://www.ykan.or.id/en/publications/articles/perspectives/preserving-a-little-paradise-on-the-coast-of-jakarta/</u>

⁶ Ginalyn, Cuenca-Ocay. (2024). Mangrove ecosystems' role in climate change mitigation. doi: 10.59120/drj.v12i2.168

2.2. Living Shorelines

Image	Component		Qualification	Scoring
Source: https://www.flseagrant.org/workforce- training/living-shorelines-training/	Ecosystem Service Benefits	• • •	 Biodiversity Support: Living shorelines harbour 10–15 marine and coastal species per hectare, enhancing biodiversity and providing critical habitats.⁷ Coastal Stabilisation: Utilising native vegetation and natural materials, living shorelines reduce sediment loss and mitigate erosion.⁷ Carbon Sequestration: They store 1–2 tons of CO₂ per hectare annually through seagrasses and salt marsh vegetation.⁷ Water Quality Improvement: By filtering water and reducing nutrient and pollutant loads, living shorelines maintain healthy aquatic environments.⁷ Wave Attenuation and Sediment Accretion: Living shorelines effectively mitigate coastal erosion, improve sediment deposition, and enhance wave attenuation.⁸ 	Medium
	Land Requirement	•	Requires moderate space and width depends on shoreline stability, wave energy, and sediment dynamics, with some projects needing minimal space and others more. ⁹	Medium
	Effectiveness for Urban Coastal Adaptation	•	Storm Resilience : They provide long-term protection against storm surges and flooding while supporting ecological functions and reducing pollution. ¹⁰	High

⁷ Ashley, R., Smyth., Laura, K., Reynolds., Savanna, C., Barry., Natalie, C., Stephens., Joshua, T., Patterson., Edward, V., Camp. (2022). Ecosystem Services of Living Shorelines. EDIS, 2022(3) doi: 10.32473/edis-ss707-2022

⁸ Tosin, A., Sekoni., Mark, Eberle., Matthew, T., Balazik., Monica, Chasten., Bob, Collins., Brian, Durham., Darrell, Evans., Kevin, Philley. (2023). 3. The use of native vegetation and natural materials in shoreline stabilization : a case study of Bubble Gum Beach, Rehoboth Beach, Delaware. doi: 10.21079/11681/47581

⁹ NOAA. (2015). Guidance for Considering the Use of Living Shorelines. <u>https://cdn.coastalscience.noaa.gov/projects-attachments/311/noaa_guidance_for_considering_the_use_of_living_shorelines_2015.pdf</u>

¹⁰ Christina, A., Hernandez., Elizabeth, H., Bouchard., Aaron, Cornell., Heidi, Yeh. (2022). 1. Selling New Jersey Landowners on Living Shorelines as the Superior Method for Coastline Protection. doi: 10.38126/jspg200105

2.3. Beach Nourishment

Image	Component		Qualification	Scoring
	Ecosystem Service Benefits	•	 Biodiversity: It supports beach nourishment and focuses on cost-effectiveness and shoreline protection, but its benefits for biodiversity are uncertain. It offers limited support for species like shorebirds and intertidal organisms.¹¹ Habitat Creation and Ecosystem Stability: Frequent sand disturbances hinder habitat creation, disrupt sediment transport, and threaten the stability of coastal ecosystems.¹² Erosion Control: Nourishment temporarily mitigates erosion by adding 10–30 m³ of sand per linear meter of beach, providing storm protection and limited habitat benefits.¹³ 	Low
Source:	Land Requirement	•	Land Requirement: It requires approximately 10-30 hectares of beach area per km for sand deposition and maintenance from 30-60-m width onwards. ¹⁴ Replenishment Frequency: Periodic sand replenishment every 2-5 years is necessary to offset erosion losses and sustain recreational and protective functions. ¹⁵	High
https://www.northcarolinahealthnews.org/2022 /09/02/youth-climate-stories-beach- nourishment-tourism-homes-outer-banks/	Effectiveness for Urban Coastal Adaptation	•	 Wave Energy Reduction: Sand nourishment can reduce wave energy by 10%–20% during mild storms, offering modest buffering against storm surges.¹⁶ Longevity and Management: Effectiveness significantly decreases without regular replenishment, particularly after major storms, with protection reduced by 50%, requiring ongoing management and assessment.¹⁷ 	Medium

¹⁴ https://www.leovanrijn-

¹¹ Theodor, Kindeberg., B., Almström., Mona, Skoog., Pål, Axel, Olsson., Johan, Hollander. (2022). 2. Toward a multifunctional nature-based coastal defense: a review of the interaction between beach nourishment and ecological restoration. Nordic Journal of Botany, doi: 10.1111/njb.03751

¹² K., N., Hart., Rebecca, S., Beavers., Sam, Whitin., C., Overcash., M., LaFrance, Bartley. (2023). 1. National Park Service beach nourishment guidance (second edition). doi: 10.36967/2299256 ¹³ Robert, G., Dean. (2005). 6. Beach Nourishment: Benefits, Theory and Case Examples. doi: 10.1007/1-4020-3301-X_2

sediment.com/papers/Beachnourishment2014.pdf#:~:text=Beach%20nourishment%20or%20beach%20fill%20is%20the,natural%20state%20and%20preserves%20its%20recreational%20value.

¹⁵ Charles, W., Finkl. (1981). 5. Beach nourishment, a practical method of erosion control. Geo-marine Letters, doi: 10.1007/BF02463334

¹⁶ K., N., Hart., Rebecca, S., Beavers., Sam, Whitin., C., Overcash., M., LaFrance, Bartley. (2023). 6. National Park Service beach nourishment guidance (second edition). doi: 10.36967/2299256

¹⁷ Matthieu, de, Schipper., B., C., Ludka., Britt, Raubenheimer., Arjen, Luijendijk., Thomas, A., Schlacher. (2021). 6. Beach nourishment has complex implications for the future of sandy shores. doi: 10.1038/S43017-020-00109-9

2.4. Dune Restoration

Image	Component	Qualification	Scoring
	Ecosystem Service Benefits	 Biodiversity: Shifts in dune vegetation, including invasive species, and disruption of ecosystem services.¹⁸ Erosion Control: Vegetated dunes reduce erosion by up to 37% during wave collision through fine root biomass.¹⁹ Carbon Sequestration: Vegetation rehabilitation increases soil inorganic carbon (SIC); CO₂ storage data are contextual.²⁰ 	Low
	Land Requirement	 Land requirement: Studies suggest that wider beaches with greater accommodation space are more conducive to dune formation and growth.²¹ Urban Conflicts: Restoration competes with development, requiring balanced stakeholder engagement.²² 	High
Source: <u>https://www.dakshin.org/wp-</u> <u>content/uploads/2017/06/Sand-</u> <u>Dunes_Policy-Brief.pdf</u>	Effectiveness for Urban Coastal Adaptation	 Storm Protection: Healthy dunes stabilise coasts and recover quickly after storms; wave energy reduction data are lacking.²³ Flood Mitigation: Revegetation in Sicily reduced flooded urban areas by 42% during extreme wave events.²⁴ Resilience: After 6 years of minimal restoration, dunes recover with increased sand accretion and vegetation.²⁵ 	High

¹⁸ Katerina, Kombiadou., Sonia, Silvestri., Susana, Costas. (2023). 11. Preliminary results for dune vegetation identification from high-resolution satellite imagery. doi: 10.5194/egusphere-egu23-15730

¹⁹ Jens, Figlus., Jacob, M., Sigren., Rusty, A., Feagin., Anna, R., Armitage. (2022). 2. The Unique Ability of Fine Roots to Reduce Vegetated Coastal Dune Erosion During Wave Collision. Frontiers in Built Environment, doi: 10.3389/fbuil.2022.904837

²⁰ Jia-Bin, Liu., Ping, Zhang., Yang, Gao. (2023). 7. Effects of vegetation rehabilitation on soil inorganic carbon in deserts: A meta-analysis. Catena, doi: 10.1016/j.catena.2023.107290

²¹ Nolet, C., & Riksen, M. J. P. M. (2019). Accommodation space indicates dune development potential along an urbanized and frequently nourished coastline. Earth Surface Dynamics, 7(1), 129–145. <u>https://doi.org/10.5194/esurf-7-129-2019</u>

²² K., Nordstrom., Nancy, L., Jackson. (2021). 2. Beach and Dune Restoration. doi: 10.1017/9781108866453

²³ Paola, Bianca, Cisneros, Linares. (2012). 20. Sea level rise impacts in coastal zones: Soft measures to cope with it. Dalhousie Journal of Interdisciplinary Management, doi: 10.5931/DJIM.V8I2.282

²⁴ Luca, Cavallaro., Lu, Yu. (2023). 2. Coastal restoration measures to mitigate coastal flooding in a context of climate change: the case of the South-East of Sicily. doi: 10.5194/egusphere-egu23-16529

²⁵ Karina, Johnston., Jenifer, E., Dugan., David, M., Hubbard., Kyle, A., Emery. (2023). 1. Using dune restoration on an urban beach as a coastal resilience approach. Frontiers in Marine Science, doi: 10.3389/fmars.2023.1187488

2.5. Salt Marshes

Image	Component		Qualification	Scoring
	Ecosystem Service Benefits	•	 Biodiversity: Salt marshes host 20–40 species per hectare, including fish, shellfish, crabs, and waterfowl. Essential breeding and foraging habitats for birds and fish, supporting ecosystem productivity.²⁶ Carbon Storage: Sequester 4–8 tons of CO₂ per hectare annually.²⁷ Nutrient Removal: Remove 22% nitrogen and 60% phosphorus inputs, enhancing water quality.²⁸ 	High
	Land Requirement	•	Land Requirement: The size of a salt marsh ecosystem could range between 140 and 280 hectares along Tamil Nadu's coastline. ²⁹ Habitat Limitation: Salt marshes are restricted to low-lying tidal zones and face pressure from agriculture and urban development. ³⁰	High
Source: https://www.nature.com/articles/s43017-021- 00196-2	Effectiveness for Urban Coastal Adaptation	•	Wave Reduction: Reduce wave energy by 30%–50% over 100 meters, aiding flood protection. ³¹ Flood Value: Restoration valued at USD 21 million, increasing with sea level rise. ³² Adaptation Limits: Moderately effective for urban adaptation but vulnerable to climate change. ³³	Medium

²⁶ Silvia, Giuliani., Luca, Giorgio, Bellucci. (2019). 17. Salt Marshes: Their Role in Our Society and Threats Posed to Their Existence. doi: 10.1016/B978-0-12-805052-1.00004-8; Laura, Lee, Rose. (2013). 2. Life Along the Salt Marsh: Protecting Tidal Creeks with Vegetative Buffers.

²⁷ Geraldine, Doolan., Stephen, Hynes. (2023). 7. Ecosystem Service Valuation of Blue Carbon Habitats: A Review for Saltmarshes and Seagrasses. Journal of ocean and coastal economics, doi: 10.15351/2373-8456.1174

²⁸ Sarah, E, Greene. (2005). 10. Nutrient Removal by Tidal Fresh and Oligohaline Marshes in a Chesapeake Bay Tributary.

²⁹ Gopi, M., Pravin Kumar, M., Joyson Joe Jeevamani, J., Raja, S., Muruganandam, R., Deepak Samuel, V., Simon, N. T., Viswanathan, C., Abhilash, K. R., Krishnan, P., Purvaja, R., & Ramesh, R. (2019). Distribution and biodiversity of tropical saltmarshes: Tamil Nadu and Puducherry, Southeast coast of India. Estuarine, Coastal and Shelf Science, 229, 106393. https://doi.org/10.1016/j.ecss.2019.106393

³⁰ JL, Raw., Janine, B., Adams., Thomas, G., Bornman., T., Riddin., Mathew, A., Vanderklift. (2021). 1. Vulnerability to sea-level rise and the potential for restoration to enhance blue carbon storage in salt marshes of an urban estuary. Estuarine Coastal and Shelf Science, doi: 10.1016/J.ECSS.2021.107495

³¹ Vincent, Vuik. (2019). 2. Building safety with nature: Salt marshes for flood risk reduction. doi: 10.4233/UUID:9339474C-3C48-437F-8AA5-4B908368C17E

³² Taylor-Burns, R., Lowrie, C., Tehranirad, B., Lowe, J., Erikson, L., Barnard, P. L., Reguero, B. G., & Beck, M. W. (2024). The value of marsh restoration for flood risk reduction in an urban estuary. Scientific Reports, 14(1), 6856. <u>https://doi.org/10.1038/s41598-024-57474-4</u>

³³ Angela, Eden., F., Thorenz. (2024). 1. Management of Wadden Sea Salt Marshes in the Context of Nature Conservation, Coastal Flooding and Erosion Risks: A Review. Environments, doi: 10.3390/environments1109019

2.6. Reactivating Floodplain

Image	Component		Qualification	Scoring
	Ecosystem Service Benefits	•	 Floodwater Retention: Reconnecting floodplains retains 1,500–3,000 m³ of floodwater per hectare, reducing flood risk and restoring natural storage.³⁴ Biodiversity: Supports 10–20 species per hectare, including wetland-dependent birds, amphibians, and aquatic species.³⁵ Carbon Sequestration: Floodplain forests sequester 1–2 tons of CO₂ per hectare annually, aiding climate regulation.³⁶ 	Medium
	Land Requirement	•	Land-Use Conflict: Re-activation competes with agriculture and urban development, requiring careful management. ³⁷	High
Source: <u>https://sandrp.in/2023/09/18/drp-nb-</u> 180923-floodplain-loss-the-biggest-in-asia- disaster-in-the-making/	Effectiveness for Urban Coastal Adaptation	•	 Flood Risk Reduction: Reduces peak flood discharge by 30%–70%, depending on size and connectivity.³⁸ Water Quality Improvement: Traps 20%–40% of sediments and pollutants, enhancing downstream water quality.³⁹ Low Maintenance: Restored floodplains provide long-term flood mitigation, habitat restoration, and improved water quality with minimal upkeep.³⁷ 	High

³⁴ C., C., Ibe., E., O., Ahaotu., P., C., Aju. (2014). 7. Management of rivers and flood plains for flood-risk reduction and biodiversity benefits.. International Journal of AgriScience,

³⁵ Stefan, Schindler., Stefan, Schindler., Fionnuala, H., O'Neill., Marianna, Biró., Christian, Damm., Viktor, Gasso., Robert, Kanka., Theo, van, der, Sluis., Andreas, Krug., Sophie, G., Lauwaars., Zita, Sebesvari., Martin, T., Pusch., Boris, Baranovsky., Thomas, Ehlert., Bernd, Neukirchen., James, R., Martin., Katrin, Euller., Katrin, Euller., Volker, Mauerhofer., Thomas, Wrbka. (2016). 4. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, doi: 10.1007/S10531-016-1129-3

³⁶ Simon, Dufour., Hervé, Piégay. (2005). 3. Restoring Floodplain Forests. doi: 10.1007/0-387-29112-1_44

³⁷ Anna, Serra-Llobet., Sonja, C., Jähnig., Juergen, Geist., G., Mathias, Kondolf., Christian, Damm., Mathias, Scholz., Jay, R., Lund., Jeffrey, J., Opperman., S., M., Yarnell., Anitra, L., Pawley., Eileen, Shader., John, Cain., Aude, Zingraff-Hamed., Theodore, E., Grantham., William, Eisenstein., Rafael, Schmitt. (2022). 1. Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany. Frontiers in Environmental Science, doi: 10.3389/fenvs.2021.778568

³⁸ Jeffrey, J., Opperman., Gerald, E., Galloway., Stéphanie, Duvail., Faith, Chivava., Kris, Johnson. (2024). 1. River-Floodplain Connectivity as a Nature-Based Solution to Provide Multiple Benefits for People and Biodiversity. doi: 10.1016/b978-0-12-822562-2.00047-5

³⁹ Edyta, Kiedrzyńska., Edyta, Kiedrzyńska., Marcin, Kiedrzyński., Maciej, Zalewski., Maciej, Zalewski. (2015). 5. Sustainable floodplain management for flood prevention and water quality improvement. Natural Hazards, doi: 10.1007/S11069-014-1529-1

2.7. Urban Forests

Image	Component	Qualification	Scoring
	Ecosystem Service Benefits	 Biodiversity: Urban forests host 15–30 species per hectare, including birds, pollinators, and small mammals, enhancing ecosystem health.⁴⁰ Wildlife Connectivity: Green corridors in urban forests support wildlife movement and ecosystem services in urban areas.⁴¹ Carbon Sequestration: Canadian urban forests sequester 2.12 tons of CO₂ per hectare annually, with variability by species and age.⁴² Urban Cooling: Urban forests reduce temperatures by 1–2°C through shade and evapotranspiration.⁴¹ Air Quality Improvement: Urban trees filter 20–50 kg of particulate matter per hectare annually, improving air quality.⁴³ 	High
	Land Requirement	 Land Requirement: Between 30 sq ft (Miyawaki forests), 1–10 ha (Nagar Vatika) to 10 hectares and upwards (Nagar Van).⁴⁴ Land Utilisation: Urban forests adapt well to under-utilised spaces, enhancing biodiversity and resilience without disrupting infrastructure.⁴⁵ 	Low
Source: <u>https://thecityfix.com/blog/trees-</u> cities-implementing-nature-based- solutions-india/	Effectiveness for Urban Coastal Adaptation	 Stormwater Management: Tree canopies reduce rainfall intensity by 42%–50%, mitigating runoff and urban flooding.⁴⁶ Heat Island Mitigation: Urban forests lower surface temperatures, with stronger cooling effects in coastal cities.⁴⁷ Climate Adaptation: Urban forests address heat and flooding but have limitations against large-scale coastal risks, requiring broader strategies.⁴⁸ 	Medium

⁴³ Арзикулов, Г.П. (2023).
 ⁷. Modeling Black Carbon Removal by City Trees: Implications for Urban Forest Planning. Urban Forestry & Urban Greening, doi: 10.1016/j.ufug.2023.128013
 ⁴⁴ https://moef.gov.in/uploads/2017/06/Implementation-Guidlines-Nager-Van-Yojana.pdf; https://bpac.in/wp-content/uploads/2019/12/Urban-Forestry-Handbook-for-Bengaluru_201912.pdf

⁴⁰ Alexandra, D., Solomou., Eleni, Topalidou., Rafaelia, Germani., Apostolia, Argiri., George, Karetsos. (2018). 4. Importance, Utilization and Health of Urban Forests: A Review. Notulae Botanicae Horti Agrobotanici Cluj-napoca, doi: 10.15835/NBHA47111316

⁴¹ Alessio, Russo., Giuseppe, T., Cirella. (2024). 4. Urban Ecosystem Services in a Rapidly Urbanizing World: Scaling up Nature's Benefits from Single Trees to Thriving Urban Forests. Land, doi: 10.3390/land13060786

⁴² James, W.N., Steenberg., P., Duinker., Lyna, Lapointe-Elmrabti., J., D., MacDonald., David, J., Nowak., Jon, Pasher., Corey, Flemming., Cameron, Samson. (2023). 9. A national assessment of urban forest carbon storage and sequestration in Canada. Carbon Balance and Management, doi: 10.1186/s13021-023-00230-4

⁴⁵ Anum, Aleha., Syeda, Mahwish, Zahra., Sabeen, Qureshi., Shehroze, Shah., Sohrab, Ahmed, Marri., Maska, Khan. (2024). 1. Urban forests and their contribution to sustainable urban development in a global context: a case study of Multan, Pakistan. Frontiers in climate, doi: 10.3389/fclim.2024.1275102

⁴⁶ Nejc, Bezak., Matteo, Moro. (2023). 8. Role of trees as part of the nature-based solutions in cities and their effects on stormwater runoff generation. doi: 10.5194/egusphere-egu23-3140 ⁴⁷ Jie, Xu., Yiqi, Yu., Wen, Zhou., Wendong, Yu., Tao, Wu. (2024). 1. Effects of the Spatial Pattern of Forest Vegetation on Urban Cooling in Large Metropolitan Areas of China: A Multi-Scale Perspective. Forests, doi: 10.3390/f15101778

⁴⁸ Xiaoyi, Xing., Lin, Yang. (2024). 1. Research progress in the climate change vulnerability of urban forests. doi: 10.1093/forestry/cpae050

2.8. Green Roofs

Image	Component	Qualification	Scoring
	Ecosystem Service Benefits	 Urban Cooling: Reduce rooftop temperatures by 2–4°C, mitigating the urban heat island effect.⁴⁹ Air Quality: Filter 10–30 kg of particulate matter per hectare annually, improving urban air quality.⁵⁰ Biodiversity: Support 5–10 species per rooftop, enhancing urban ecosystems.⁵¹ Carbon Sequestration: Store 0.2–0.5 tons of CO₂ per hectare annually.⁵² 	Medium
	Land Requirement	 Space Needs: A minimum area of 10 m²; surface arranged to ensure natural vegetation and rainwater retention.⁵³ Integration: Easily retrofitted onto buildings, promoting urban sustainability.⁵⁴ 	Low
Source: https://www.purple- roof.com/post/green-roofs-answer-urban- resilience	ce: <u>https://www.purple-</u> com/post/green-roofs-answer-urban- ence	 Flood Reduction: Reduce flood volume by up to 62% and runoff by 24%, effective at >25% application rates.⁵⁵ Peak Flow Mitigation: Decrease peak flow rates by 22%–93%, mitigating urban flooding.⁵⁶ Localized Impact: Effective for urban flood management in high-density areas but limited for large-scale coastal risks.⁵⁷ 	Medium

⁴⁹ John, Vourdoubas. (2024). 2. Review of the Benefits of Green Roofs. International Journal of Current Science Research and Review, doi: 10.47191/ijcsrr/v7-i9-48

⁵⁰ Anna, Nagurney. (2023). 9. Mitigation of urban particulate pollution using lightweight green roof system. Energy and Buildings, doi: 10.1016/j.enbuild.2023.113203

⁵¹ Mala, Ramesh., N.R.Raghavendra., R., Nijagunappa. (2015). 17. Green roofs- an eco-friendly approach to sustainable livelihood. Environmental Science: an Indian journal,

⁵² D., Bradley, Rowe. (2011). 22. Green roofs as a means of pollution abatement. Environmental Pollution, doi: 10.1016/J.ENVPOL.2010.10.029

⁵³ Michalik-Śnieżek, M., Adamczyk-Mucha, K., Sowisz, R., & Bieske-Matejak, A. (2024). Green Roofs: Nature-Based Solution or Forced Substitute for Biologically Active Areas? A Case Study of Lublin City, Poland. Sustainability, 16(8), Article 8. https://doi.org/10.3390/su16083131

⁵⁴ John, Vourdoubas. (2024). 1. Review of the Benefits of Green Roofs. International Journal of Current Science Research and Review, doi: 10.47191/ijcsrr/v7-i9-48

⁵⁵ Tushar, Bose., Tushar, Bose., Tushar, Bose. (2024). 2. Performance and uncertainty assessment of green roofs for urban flood reduction in a high-density catchment in Ahmedabad, India. Journal of Environmental Management, doi: 10.1016/j.jenvman.2024.121500

⁵⁶ Yanling, Li., Roger, W., Babcock. (2014). 13. Green roof hydrologic performance and modeling: a review.. Water Science and Technology, doi: 10.2166/WST.2013.770

⁵⁷ Tushar, Bose., Tushar, Bose., Tushar, Bose. (2024). 1. Performance and uncertainty assessment of green roofs for urban flood reduction in a high-density catchment in Ahmedabad, India. Journal of Environmental Management, doi: 10.1016/j.jenvman.2024.121500

2.9. Bioretention Areas

Image	Component	Qualification	Scoring
	Ecosystem Service Benefits	 Particulate Removal: Mature bioretention systems reduce particulates and particulate- bound metals by 82% and 83%, respectively, but are less effective against dissolved metals.⁵⁸ Biodiversity: Enhance biodiversity and habitat creation, although species specifics are not detailed.⁵⁹ Carbon Sequestration: Sequester 0.5–1 ton of CO₂ per hectare annually through vegetation and soil processes.⁶⁰ Urban Cooling: Reduce localised temperatures by 1–2°C, mitigating urban heat islands.⁶¹ 	High
Source:	Land Requirement	 Area requirement: Designed to treat 0.5–1 inch of runoff, 15 feet(W) x 4 feet(H), and a ponding depth of 6–8 inches capable of draining within 72 hours.⁶² Scalability: Flexible in design, suitable for integration into medians, parking lots, and parks.⁶³ 	Medium
green-stormwater-infrastructure- initiatives/roadway-bioretention-areas	Effectiveness for Urban Coastal Adaptation	 Flood Mitigation: Reduce peak flow magnitudes by over 80%, mitigating flash floods and runoff.⁶⁴ Coastal Adaptation: Support sustainable stormwater management in urban coastal areas.⁶⁵ 	High

⁵⁸ Kristen, Croft., Birthe, V., Kjellerup., Allen, P., Davis. (2024). 5. Interactions of particulate- and dissolved-phase heavy metals in a mature stormwater bioretention cell.. Journal of Environmental Management, doi: 10.1016/j.jenvman.2023.120014

⁵⁹ Muhammad, Shafique. (2016). 7. A review of the bioretention system for sustainable storm water management in urban areas. doi: 10.1515/RMZMAG-2016-0020

⁶⁰ Emad, Kavehei., Graham, Andrew, Jenkins., Charles, James, Lemckert., Maria, Fernanda, Adame. (2019). 4. Carbon stocks and sequestration of stormwater bioretention/biofiltration basins. Ecological Engineering, doi: 10.1016/J.ECOLENG.2019.07.006

⁶¹ Thidarat, Kridakorn, Na, Ayutthaya., Chawanat, Sundaranaga., Non, Phichetkunbodee., Rujiroj, Anambutr., Pongsakorn, Suppakittpaisarn., Damrongsak, Rinchumphu. (2023). 4. The influence of bioretention assets on outdoor thermal comfort in the urban area. Energy Reports, doi: 10.1016/j.egyr.2023.05.257

⁶² https://megamanual.geosyntec.com/npsmanual/bioretentionareas.aspx

⁶³ Jun, Wang., Jing-Jue, Jia., Shengle, Cao., Yijiao, Diao., Jiachang, Wang., Yiping, Guo. (2023). 2. A new analytical stormwater model for bioretention systems considering both infiltration and saturation excess runoff generation processes. Journal of Hydrology, doi: 10.1016/j.jhydrol.2023.130500

⁶⁴ Brian, G., Laub., Eugene, Von, Bon., Lani, May., Mel, Garcia. (2024). 1. The Hydrologic Mitigation Effectiveness of Bioretention Basins in an Urban Area Prone to Flash Flooding. Water, doi: 10.3390/w16182597

⁶⁵ Guohao, Li., Guohao, Li., Jiaqing, Xiong., Junguo, Zhu., Yanzheng, Liu., Mawuli, Dzakpasu. (2021). 8. Design influence and evaluation model of bioretention in rainwater treatment: A review. Science of The Total Environment, doi: 10.1016/J.SCITOTENV.2021.147592

2.10. Permeable Pavements

Image	Component	Qualification	Scoring
Source: https://pavementnetwork.com/permeable -pavements/	Ecosystem Service Benefits	 Runoff Reduction: Permeable pavements reduce surface runoff by 30%–50%, depending on soil infiltration and design.⁶⁶ Groundwater Recharge: Infiltrate 10–20 litres of water per square metre during rainfall, enhancing hydrological cycles.⁶⁷ Biodiversity: Support soil-dwelling insects like wild bees and wasps, providing valuable nesting sites.⁶⁸ 	Low
	Land Requirement	 Space Needs: Replaces existing paved surfaces, requiring no additional land, making it highly space-efficient at ~20 m² onwards.⁶⁹ Applications: Suitable for parking lots, sidewalks, and low-traffic areas, integrating easily into urban layouts.⁶⁶ 	Low
	Effectiveness for Urban Coastal Adaptation	 Flood Mitigation: Improve drainage efficiency and mitigate localised flooding, supporting urban coastal adaptation.⁷⁰ Limitations: Effective for small-scale flooding but not for large-scale stormwater or coastal adaptation strategies.⁶⁶ 	Low

⁶⁶ Jinjun, Zhou., Yali, Pang., Wei, Du., Tianyi, Huang., Hao, Wang., Meilin, Zhou., Jiahong, Liu. (2024). 1. Review of the development and research of permeable pavements. Hydrological Processes, doi: 10.1002/hyp.15179

⁶⁷ Eneko, Madrazo-Uribeetxebarria., Maddi, Garmendia, Antín., Ignacio, Andrés-Doménech. (2023). 3. Analysis of the hydraulic performance of permeable pavements on a layer-by-layer basis. Construction and Building Materials, doi: 10.1016/j.conbuildmat.2023.131587

⁶⁸ Claudia, Weber., Grégoire, Noël., Wiebke, Sickel., Michael, T., Monaghan., Aletta, Bonn., Sophie, Lokatis. (2024). 2. Urban pavements as a novel habitat for wild bees and other groundnesting insects. Urban Ecosystems, doi: 10.1007/s11252-024-01569-3

⁶⁹ Joshi, T., & Dave, U. (2022). Construction of pervious concrete pavement stretch, Ahmedabad, India – Case study. Case Studies in Construction Materials, 16, e00622. https://doi.org/10.1016/j.cscm.2021.e00622

⁷⁰ Dadang, Mohamad. (2024). 3. Assessment of Permeable Pavements for Urban Flood Mitigation and Community Resilience. International Journal of Science and Society, doi: 10.54783/ijsoc.v6i2.1195

2.11. Inland Wetlands

Image	Component	Qualification	
Source: https://environment- review.yale.edu/making-way-coastal- wetlands-look-sea-level-rise-and-urban- development	Ecosystem Service Benefits	 Biodiversity: Inland wetlands support 20–30 species per hectare, including birds, amphibians, and aquatic plants.⁷¹ Water Retention: Retain 500–1,000 m³ of water per hectare, aiding in flood mitigation.⁷¹ Carbon Storage: Sequester 2–4 tons of CO₂ per hectare annually, influenced by vegetation and hydrology.⁷² 	Medium
	Land Requirement	 Area: The minimum size for wetlands considered in the national inventory and assessment for India is 2.25 hectares, often located in peri-urban or rural areas.⁷³ Land Use: Compete with agriculture, particularly in arid and semiarid regions.⁷⁴ 	Medium
	Effectiveness for Urban Coastal Adaptation	 Flood Management: Manage inland flooding effectively but have limited impact on coastal challenges like storm surges.⁷⁵ Water Quality Improvement: Reduce nitrogen by 18%–28% and phosphorus by 4%–11%, enhancing water quality.⁷⁶ Limitations: Geographic and hydrological constraints reduce their impact on urban coastal resilience amid salinification and land-use changes.⁷⁵ 	Low

⁷¹ Igor, Zelnik., Mateja, Germ. (2023). 2. Diversity of Inland Wetlands: Important Roles in Mitigation of Human Impacts. Diversity, doi: 10.3390/d15101050

⁷² Emmah, Mandishona., Jasper, Knight. (2022). 4. Inland wetlands in Africa: A review of their typologies and ecosystem services. Progress in Physical Geography, doi: 10.1177/03091333221075328

⁷³ https://mospi.gov.in/sites/default/files/reports_and_publication/statistical_publication/EnviStats/Chap4-Wetlands_envst22.pdf

⁷⁴ Max, Erdmann. (2022). 2. Inland marshes. doi: 10.1016/b978-0-12-823981-0.00014-9

⁷⁵ Beth, A., Middleton., Jere, A., Boudell. (2023). 1. Salinification of coastal wetlands and freshwater management to support resilience. Ecosystem health and sustainability, doi: 10.34133/ehs.0083

⁷⁶ Fangjun, Peng., Leyang, Liu., Ana, Mijić. (2024). 5. Role of urban wetlands in improving catchment river water quality with implications for management. doi: 10.5194/egusphere-egu24-6269

2.12. Naturalised Riverbanks

Image	Component	Qualification S	Scoring
Fource:	Ecosystem Service Benefits	 Erosion Control: Reduce bank erosion by 50%–70% using vegetation and natural materials.⁷⁷ Biodiversity: Support 20–40 species per kilometre, including riparian flora, fish, amphibians, and birds.⁷⁸ Water Quality: Filter 30%–60% of sediments and pollutants, improving downstream water quality.⁷⁸ Carbon Sequestration: Sequester 2–5 tons of CO₂ per kilometre annually, depending on vegetation density.⁷⁹ 	High
	Land Requirement	 Space Needs: A minimum width of 30 feet is necessary, with 100 feet recommended for most conditions. For diverse wildlife habitats or steep slopes, a width of up to 300 feet (100 meters) is advisable.⁸⁰ Urban Integration: Face moderate competition with urban development but are easier to integrate than inland wetlands.⁸¹ 	Medium
https://stateofgreen.com/en/solutions/wat er-brings-life-to-bishan-ang-mo-kio-park/	Effectiveness for Urban Coastal Adaptation	 Flood Mitigation: Reduce flood peaks and stormwater runoff, enhancing urban resilience.⁸² Limitations: Effective for riverine systems but less suitable for coastal flooding or sea level rise adaptation.⁸³ 	Medium

⁷⁷ Maxime, Tisserant., Maxime, Tisserant., Bérenger, Bourgeois., Bérenger, Bourgeois., Eduardo, González., André, Evette., Monique, Poulin., Monique, Poulin. (2021). 4. Controlling erosion while fostering plant biodiversity: A comparison of riverbank stabilization techniques. Ecological Engineering, doi: 10.1016/J.ECOLENG.2021.106387

⁷⁸ Joanna, Zawadzka., Elaine, A., Gallagher., Heather, M., Smith., Ronald, Corstanje. (2019). 4. Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement. Ecological Engineering, doi: 10.1016/J.ECOENA.2019.100006

⁷⁹ Caichun, Yin., Wenwu, Zhao., Jingqiao, Ye., Monica, Muroki., Paulo, Pereira. (2023). 2. Ecosystem carbon sequestration service supports the Sustainable Development Goals progress. Journal of Environmental Management, doi: 10.1016/j.jenvman.2022.117155

⁸⁰ https://www.nrcs.usda.gov/sites/default/files/2022-09/Riparian_Forest_Buffer_391_CPS_10_2020.pdf ; https://www.arlis.org/docs/vol1/71303840.pdf

⁸¹ Yi, Fan, Ding., De, Shan, Tang., Yuhang, Wei., Yi, Xiang, Sun. (2014). 1. Naturalization Design of Urban Water Landscape. Advanced Materials Research, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.919-921.1559

⁸² Md., Esraz-Ul-Zannat., Aysin, Dedekorkut-Howes., E., Morgan. (2024). 1. A review of nature-based infrastructures and their effectiveness for urban flood risk mitigation. doi: 10.1002/wcc.889

⁸³ Veronica, Zagare. (2022). 2. Nature-based Solutions for climate adaptation and mitigation in Deltas and coastal areas.. doi: 10.59490/jdu.3.2022.6863

2.13. Artificial Reefs

Image	Component	Qualification	
Source: https://reefwatchindia.org/initiative- 4/reefgenerate/	Ecosystem Service Benefits	 Biodiversity Support: Artificial reefs host 10–20 species per structure, including fish, crustaceans, and coral colonies.⁸⁴ Ecosystem Services: Enhance marine habitats, support trophic guilds, and improve local fisheries, although specific fish biomass increases are not detailed.⁸⁵ Carbon Sink Limitation: Limited carbon sink potential due to low marine species diversity in certain areas.⁸⁶ 	Medium
	Land Requirement	• Integration: Designed to minimise spatial conflicts with urban and coastal developments while promoting sustainable marine resource use. ⁸⁷	Low
	Effectiveness for Urban Coastal Adaptation	 Wave Energy Reduction: Reduce wave energy by 10–20%, aiding coastal erosion protection and shoreline stability.⁸⁸ Storm Surge Protection: Buffer mild storm surges but are less effective during high-intensity events than natural reefs.⁸⁹ Maintenance: Require regular upkeep to prevent degradation but offer long-term ecological and socio-economic benefits if managed properly.⁸⁹ 	Medium

⁸⁴ Valeriya, Komyakova., Valeriya, Komyakova., Dean, Chamberlain., Stephen, E., Swearer. (2021). 3. A multi-species assessment of artificial reefs as ecological traps. Ecological Engineering, doi: 10.1016/J.ECOLENG.2021.106394 ; Shike, Gao., Bin, Xie., Yufeng, He., Shuo, Zhang., Yunkai, Li., Jikun, Lu., Guanghui, Fu. (2024). 1. Trophic Structure of Fish Community in Artificial Reef Ecosystem Based on Body Mass Using Stable Isotope. Water, doi: 10.3390/w16213034

⁸⁵ Ana, Maria, Madiedo., Jorge, Ramos., Francisco, Leitão. (2024). 1. Enhancing Ecosystem Services. Advances in environmental engineering and green technologies book series, doi: 10.4018/979-8-3693-2436-3.ch006

⁸⁶ A., P., Shu., Ziru, Zhang., Le, Wang., Tao, Sun., Wei, Yang., Jiapin, Zhu., Jiping, Qin., Fuyang, Zhu. (2022). 5. Effects of typical artificial reefs on hydrodynamic characteristics and carbon sequestration potential in the offshore of Juehua Island, Bohai Sea. Frontiers in Environmental Science, doi: 10.3389/fenvs.2022.979930

⁸⁷ Bianca, Reis., Pieter, van, der, Linden., Isabel, Sousa, Pinto., Emanuel, Almada., Maria, Teresa, Borges., Alice, E., Hall., Richard, Stafford., Roger, J.H., Herbert., Jorge, Lobo-Arteaga., Jorge, Lobo-Arteaga., Maria, José, Gaudêncio., Maria, José, Gaudêncio., Miriam, Tuaty-Guerra., Miriam, Tuaty-Guerra., Océane, Ly., Valentin, Georges., Mariane, Audo., Nassim, Sebaibi., Mohamed, Boutouil., Elena, Blanco-Fernandez., João, N., Franco., João, N., Franco. (2021). 8. Artificial reefs in the North –East Atlantic area: Present situation, knowledge gaps and future perspectives. Ocean & Coastal Management, doi: 10.1016/J.OCECOAMAN.2021.105854

⁸⁸ Marcel, R.A., van, Gent., Davide, Wüthrich. (2023). 6. Wave transmission at submerged coastal structures and artificial reefs. Coastal Engineering, doi: 10.1016/j.coastaleng.2023.104344

⁸⁹ Baptiste, Vivier., Jean-Claude, Dauvin., Maxime, Navon., Anne-Marie, Rusig., Isabelle, Mussio., Francis, Orvain., Mohamed, Boutouil., Pascal, Claquin. (2021). 9. Marine artificial reefs, a metaanalysis of their design, objectives and effectiveness. Global Ecology and Conservation, doi: 10.1016/J.GECCO.2021.E01538

3. Context Assessments: Chennai

3.1. Kathivakkam

Ward	Net Area (sq km)	Land Use Area (sq km)	
		Barren land	0.00
Ward 1 1.75		Coastal sandy area	0.05
		Industrial	0.03
	Open space	0.04	
		Residential	0.81
		Transportation	0.12
		Waterbody	0.70

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained (ML) per storm
Green Rooftops	70%	0.51	35.7	event of 100
Permeable Pavements	85%	0.01	0.85	mm without NbS
Bioretention Spaces	60%	0.70	42.0	interventions
Urban Forests	12%	0.04	0.48	
Total		1.26	79.03	1.85

3.2. Ennore

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.00
		Green space	0.05
Ward 2 2	2.94	Industrial	0.58
		Residential	1.06
		Transportation	0.27
		Tree clad area	0.02
		Vacant land	0.23
		Waterbody	0.72
		Wetland	0.01

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.72	50.30	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.73	0.67	without NbS
Bioretention Spaces	60%	0.04	43.83	interventions
Urban Forests	12%	0.01	0.50	
Total		1.50	95.31	14.72

Å

3.3. Ernavoor

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.07
		Crop land	0.01
		Green space	0.06
	3.16	Industrial	1.17
		Public and semi- public	0.00
Ward 3		Residential	1.18
		Transportation	0.36
		Tree clad area	0.00
		Vacant land	0.01
		Waterbody	0.27
		Wetland	0.03

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.90	63.03	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.31	0.75	without NbS
Bioretention Spaces	60%	0.34	18.56	interventions
Urban Forests	12%	0.01	4.14	
Total		1.56	86.47	8.81

3.4. Ajax

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Green space	0.01
		Industrial	0.67
	Residential	0.97	
Mard (Vard 4 2.10	River/stream/canals	0.02
VValu 4		Transportation	0.17
	Vacant land	0.05	
	Waterbody	0.16	
		Wetland	0.04

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.70	48.89	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.22	0.62	without NbS
Bioretention Spaces	60%	0.00	13.40	interventions
Urban Forests	12%	0.01	0.00	
Total		0.93	62.91	5.47

potential increase in water detention

3.5. Tiruvottriyur

Ward	Net Area (sq km)	Land Use	Area (sq km)
Ward 5 2.10	Coastal sandy area	0.05	
	Industrial	0.85	
	Public and semipublic	0.00	
	Residential	0.77	
		Transportation	0.30
		Waterbody	0.14

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.52	36.43	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.14	0.49	without NbS
Bioretention Spaces	60%	0.19	8.15	interventions
Urban Forests	12%	0.01	2.24	
Total		0.85	47.30	0.72

3.6. Kaladipet

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Crop land	0.01
		Green space	0.00
	Industrial	0.00	
		Residential	0.84
Ward 6	1.39	River/stream/canals	0.03
	Transportation	0.07	
	Vacant land	0.15	
		Waterbody	0.08
		Wetland	0.19

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.65	45.23	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.30	0.54	without NbS
Bioretention Spaces	60%	0.00	18.12	interventions
Urban Forests	12%	0.01	0.00	
Total		0.95	63.89	17.41

3.7. Rajakadai

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.01
		Crop land	0.03
		Green space	0.71
	Industrial	4.51	
		Open space	0.00
Ward 7 7.77	Public and semipublic	0.07	
	Residential	1.29	
		River/stream/canals	0.26
	Transportation	0.54	
		Waterbody	0.34
		Wetland	0.00

the age and age age age age age

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.82	57.46	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.66	0.82	without NbS
Bioretention Spaces	60%	0.00	39.62	interventions
Urban Forests	12%	0.01	0.00	
Total		1.49	97.90	37.09

61% potential increase in water detention

3.8. Edyanchavadi

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.24	16.94	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.05	0.23	without NbS
Bioretention Spaces	60%	0.00	3.00	interventions
Urban Forests	12%	0.00	0.00	
Total		10.29	20.17	0.85

potential increase in water detention

3.9. Kadapakkam

Ward	Net Area (sq km)	Land Use	Area (sq km)
Ward 9	0.56	Coastal sandy area	0.03
		Industrial	0.00
		Residential	0.34
		Transportation	0.05
		Waterbody	0.14

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.22	15.10	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.14	0.22	without NbS
Bioretention Spaces	60%	0.00	8.62	interventions
Urban Forests	12%	0.00	0.00	
Total		0.36	23.93	0.40

3.10. Theeyambakkam

Ward	Net Area (sq km)	Land Use	Area (sq km)
Ward 10	0.53	Green space	0.01
		Industrial	0.00
		Residential	0.42
		Transportation	0.10
		Waterbody	0.00

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.29	20.00	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.27	without NbS
Bioretention Spaces	60%	0.00	0.02	interventions
Urban Forests	12%	0.00	0.00	
Total		0.29	20.28	0.34

3.11. Manali

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Coastal sandy area	0.02
		Industrial	0.05
Ward 11 0.60	Public and semipublic	0.00	
		Residential	0.37
		Transportation	0.07
		Waterbody	0.09

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.25	17.66	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.09	0.24	without NbS
Bioretention Spaces	60%	0.00	5.47	interventions
Urban Forests	12%	0.00	0.00	
Total		0.35	23.37	0.25

23% potential increase in water detention

3.12. Mathur

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.28	19.37	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.24	without NbS
Bioretention Spaces	60%	0.00	0.00	interventions
Urban Forests	12%	0.00	0.00	
Total		0.28	19.61	0.00

Legens LULC

3.13. Puzhal

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Coastal sandy area	0.03
	Ward 14 0.63	Industrial	0.11
Ward 14		Residential	0.25
		Transportation	0.09
		Waterbody	0.16

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Bioretention Areas	High	Medium	High
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium
Salt Marshes	High	High	Medium
Re-activating Floodplain	Medium	High	High
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.16	11.13	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.16	0.16	without NbS
Bioretention Spaces	60%	0.00	9.45	interventions
Urban Forests	12%	0.00	0.00	
Total		0.32	20.73	0.42

potential increase in water detention

3.14. Puthagram

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Crop land	0.16
		Green space	0.23
		Industrial	0.15
		Public and semi public	0.24
Mard 15	רד ס	Residential	2.19
Ward is a	0.77	Transportation	0.08
		Tree clad area	0.20
		Vacant land	3.37
		Waterbody	2.14
		Wetland	0.02

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	1.11	78.01	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	1.39	without NbS
Bioretention Spaces	60%	0.00	0.14	interventions
Urban Forests	12%	0.02	0.00	
Total		1.13	79.54	20.25

3.15. Kathirvedu

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.01
		Crop land	1.78
		Green space	0.01
		Industrial	0.75
		Public and semipublic	0.05
Mard 16	10.11	Residential	3.47
	10.11	River/stream/canals	0.00
		Transportation	0.09
		Tree clad area	0.20
		Vacant land	2.09
		Waterbody	1.58
		Wetland	0.07

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	2.22	155.05	(ML) per storm event of 100 mm
Permeable Pavements	85%	1.71	2.22	without NbS
Bioretention Spaces	60%	0.00	102.51	interventions
Urban Forests	12%	0.03	0.00	
Total		3.95	259.78	165.44

3.16. Assisi Nagar – 9th St

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.52
		Crop land	0.31
		Green space	0.55
		Industrial	4.81
		Open space	0.14
Ward 18	8.70	Public and semipublic	0.13
		Residential	1.29
		Transportation	0.38
		Vacant land	0.33
		Waterbody	0.23
		Wetland	0.01

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.77	53.61	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.30	0.82	without NbS
Bioretention Spaces	60%	0.32	18.29	interventions
Urban Forests	12%	0.01	3.89	
Total		1.40	76.62	67.74

9% potential increase in water detention

Legend LULC Baseched Convector Convector Convector Convector Convector Convector Convector Convector

3.17. Kodungaiyur

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.00
		Crop land	0.00
		Industrial	1.26
Ward 21	3.12	Open space	0.08
		Residential	0.37
	Transportation	0.15	
		Waterbody	1.26

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.28	19.59	(ML) per storm event of 100 mm
Permeable Pavements	85%	1.26	0.23	without NbS
Bioretention Spaces	60%	0.01	75.77	interventions
Urban Forests	12%	0.00	0.16	
Total		1.56	95.75	2.49

93% potential increase in water detention

3.18. Sowcarpet

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.13
		Commercial	0.02
		Crop land	0.00
		Green space	0.04
		Industrial	1.10
Ward 37	4.13	Open space	1.28
		Residential	1.31
		River/stream/canals	0.10
		Transportation	0.14
		Tree clad area	0.00
		Waterbody	0.00

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.95	66.43	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.11	0.84	without NbS
Bioretention Spaces	60%	0.07	6.83	interventions
Urban Forests	12%	0.01	0.84	
Total		1.14	74.94	47.24

potential increase in water detention

3.19. Central

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Green space	0.02
		Industrial	0.26
Mard 79	1 0 2	Open space	0.04
Ward 38 1.82	1.02	Residential	0.68
		River/stream/canals	0.04
		Transportation	0.78

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.49	34.39	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.04	0.43	without NbS
Bioretention Spaces	60%	0.06	2.24	interventions
Urban Forests	12%	0.01	0.70	
Total		0.59	37.76	2.21

potential increase in water detention

3.20. Choolai

Ward	Net Area (sq km)	Land Use	Area (sq km)
Ward 39 1.05		Barren land	0.00
	1.05	Industrial	0.18
		Residential	0.78
		Transportation	0.09

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.36	25.52	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.50	without NbS
Bioretention Spaces	60%	0.04	0.00	interventions
Urban Forests	12%	0.01	0.48	
Total		0.41	26.50	0.08

3.21. Purasaivakkam

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.00
		Green space	0.02
	Ward 41 0.90	Industrial	0.12
Ward 41		Residential	0.58
	River/stream/canals	0.04	
		Transportation	0.14
		Waterbody	0.00

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.45	31.26	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.04	0.37	without NbS
Bioretention Spaces	60%	0.00	2.23	interventions
Urban Forests	12%	0.00	0.00	
Total		0.49	33.86	0.99

3.22. Anna Salai

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Coastal sandy area	0.06
		Commercial	0.01
		Crop land	0.02
Ward 43	1.00	Industrial	0.11
		Public and semipublic	0.06
		Residential	0.65
		Transportation	0.09

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.41	28.91	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.41	without NbS
Bioretention Spaces	60%	0.02	0.00	interventions
Urban Forests	12%	0.00	0.24	
Total		0.44	29.57	1.55

28% potential increase in water detention

3.23. George Town

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Barren land	0.09
		Crop land	0.00
		Green space	0.03
		Industrial	0.03
Mard (6	175	Public and semipublic	0.00
Ward 46 1.45	1.45	Residential	0.73
		River/stream/canals	0.04
		Transportation	0.32
		Tree clad area	0.19
		Waterbody	0.00

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.44	30.60	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.05	0.47	without NbS
Bioretention Spaces	60%	0.05	2.76	interventions
Urban Forests	12%	0.01	0.66	
Total		0.54	34.38	9.03

Å

4. Context Assessments: Mangaluru

4.1. Panambur

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Coastal sandy area	0.57
		Commercial	0.12
		Industrial	2.57
		Land with open scrub	0.04
		Open space	0.01
		Public and semi-public	1.22
Ward 11 10.82	Residential	0.21	
		River	1.92
		Transportation	2.92
		Tree clad area	0.58
		Vacant land	0.05
		Waterbody	0.08
		Wetland	0.54

74'47'30'E 74'48'0'E 74'48'30'E 74'48'30'E 74'49'30'E 74'49'30'E 74'50'0'E 74'50'30'E 74'50'30'E 74'50'30'E

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Bioretention Areas	High	Medium	High
Permeable Pavements	Low	Low	Low
Inland Wetlands	Medium	Medium	Low
Naturalised Riverbanks	High	Medium	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.15	10.42	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.05	0.13	without NbS
Bioretention Spaces	60%	0.71	2.84	interventions
Urban Forests	12%	0.00	8.53	
Total		0.91	21.93	14.30

potential increase in water detention

4.2. Port

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Commercial	0.11
		Industrial	0.14
		Mixed use	0.05
		Open space	0.11
Ward 45	Ward 45 1.97	Public and semi- public	0.17
		Residential	0.42
		River	0.72
		Transportation	0.26

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.28	19.87	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.27	without NbS
Bioretention Spaces	60%	0.03	0.00	interventions
Urban Forests	12%	0.00	0.37	
Total		0.32	20.50	0.56

20% potential increase in water detention

4.3. Hoige Bajar

Ward	Net Area (sq km)	Land Use	Area (sq km)
		Industrial	0.00
		Mixed use	0.08
Ward 57 1.36		Public and semi- public	0.09
	1.36	Residential	0.41
		River	0.70
		Transportation	0.05
		Vacant land	0.03

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.28	19.50	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.26	without NbS
Bioretention Spaces	60%	0.03	0.11	interventions
Urban Forests	12%	0.00	0.38	
Total		0.32	20.26	0.89

4.4. Bengre

Ward	Net Area (sq km)	Land Use	Area (sq km)
Ward 60	1.51	Coastal sandy area	0.07
		Open space	0.02
		Public and semi- public	0.13
		Residential	0.58
		River	0.69
		Transportation	0.03

Туре	ES Benefits	Land Requirement	Adaptation Benefits
Urban Forest, Forest Corridors	High	Low	Medium
Green Roofs	Medium	Low	Medium
Permeable Pavements	Low	Low	Low
Artificial Reefs	Medium	Low	Medium

NbS Type	Average Rain Detention	Area (sq km)	Water Detention Potential (ML) per storm event of 100 mm	Water Detained
Green Rooftops	70%	0.37	25.67	(ML) per storm event of 100 mm
Permeable Pavements	85%	0.00	0.37	without NbS
Bioretention Spaces	60%	0.02	0.04	interventions
Urban Forests	12%	0.00	0.21	
Total		0.39	26.28	1.15

CENTER FOR STUDY OF SCIENCE, TECHNOLOGY AND POLICY

Bengaluru No.18, 10th Cross, Mayura Street, Papanna Layout, Nagashettyhalli (RMV II Stage), Bengaluru-560094 Karnataka, India

Noida 1st Floor, Tower-A, Smartworks Corporate Park, Sector-125, Noida-201303, Uttar Pradesh, India

www.cstep.in

𝕅 @cstep_India